首页 > 学习资料 > 教学设计 >

教育咨询与教学设计的关系【精彩5篇】

网友发表时间 3236604

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“教育咨询与教学设计的关系【精彩5篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

教育咨询与教学设计的关系【第一篇】

一、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

二、教材的重点难点。

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

三、教学重点和难点。

解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,

3.直线l与圆o相离=dr。

(上述结论中的符号“=”读作“等价于”)。

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。

四、教学程序。

[提问]通过观察、演示,你知道直线和圆有几种位置关系?

[讨论]一轮红日从海平面升起的照片。

[新授]给出相交、相切、相离的定义。

[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

教育咨询与教学设计的关系【第二篇】

1.巩固7的加减法,提高计算的速度和正确率.

3.初步培养学生的观察、分析能力和语言表达能力.。

4.通过教学培养学生学习数学的兴趣,养成认真倾听、积极思考的学习习惯.。

教学重点。

正确识图,知道括号和问号所表示的意义.

教学难点。

结合图意正确地选择算法.。

教学过程。

一、复习导入。

1.口算:7以内的加减法。

老师依次出示口算卡片,学生开火车口算.。

2.看图列式计算。

分别出示:教材36页的`兔子图和青蛙图(不加“括号”和“?只”).。

学生看图列式,老师板书:4+3=77-2=5。

3+4=7。

第2题为什么用减法?(因为荷叶上有7只青蛙,跳到水里2只就是去掉了2只,所以用减法.)。

师:同学们对图的意思理解得非常好!你们都是根据小动物做动作的方向,确定是需要“合并”还是需要“去掉”来列算式的,今天我们要学习的题目意思更明确了,图中清楚地告诉我们要求什么问题,这就是图画应用题.(板书课题:图画应用题)。

二、学习新知。

1.教学例1。

老师在兔子图的下面画括号,在括号的下面加写“?只”.。

问:括号表示什么意思?“?只”表示什么意思?

老师引导学生叙述图意.。

边指图边问:图中告诉了我们什么?又告诉了我们什么?让我们求什么?

在分步回答的基础上,让学生试着用三句话完整地叙述图意.。

(有4只兔子采蘑菇,又来了3只,现在一共有几只?)。

问:要求现在一共有几只,怎样列式?为什么用加法计算?

板书:4+3=7(要求现在一共有几只,就要把4只和3只这两部分合并起来,所以用加法计算.)。

问:4+3=7表示什么意思?

2.教学例2。

老师在青蛙图上画括号,在括号下面写“7只”,在左边的青蛙图上面写“?只”.。

问:现在这幅青蛙图和刚才有什么不同?(多了括号、7只和?只)。

这幅图表示什么意思呢?

问:题中告诉我们原来荷叶上有几只青蛙?(出现“括号、7只”)。

(手指“跳到水里的青蛙”)跳到水里几只?(手指“?只”)求什么?

你能完整地叙述一下图意吗?

找两名同学完整地叙述图意.(原来荷叶上有7只青蛙,跳到水里2只,还剩几只?)。

问:要求还剩几只,怎样列式?为什么用减法?

板书:7-2=5(要求还剩几只,就要从原来的7只里面去掉跳到水里的2只,所以用减法计算.)。

问:7-2=5表示什么意思?

3.比较。

(第1题是知道了两个部分求整体用加法计算;第2题是知道了整体和其中的一部分,求另一部分,用减法计算.)。

师:问号所在的位置不同,所求的问题就不同,因此,同学们在看图的时候一定要认真.。

4.做一做。

(1)投影出示教材36页做一做的金鱼图。

问:图中告诉了我们什么和什么,让我们求什么?

找两个人叙述图意后,学生独立列式.。

订正时说一说:为什么用加法计算?

(2)投影出示36页做一做的小鸟图。

问:树上原来有几只小鸟?(7只)飞走了几只?(3只)求什么?

指名学生完整地叙述一下图意.。

学生列式解答.。

订正时说一说:为什么用减法计算?

5.质疑。

师:今天我们学习了什么知识?你知道了什么?谁还有什么问题吗?

三、巩固提高。

1.出示教材39页第5题的苹果图和兔子图。

同桌互相说图意,然后自己列式解答,最后集体订正:说一说你是怎么想的.。

2.看图列式(学生独立完成)。

3.教材39页的思考题:

有7只小兔,每只小兔要喂1个萝卜,还缺2个萝卜.现在有几个萝卜?

学生分组讨论,然后全班交流.。

教育咨询与教学设计的关系【第三篇】

教学内容。

《义务教育课程标准实验教科书数学》(人教版)四年级下册第62页。

教材和学情分析。

《三角形边的关系》这节课是人教修订版四年级数学下册第五单元第二课时的内容。在平面图形里,学生已经学习了线段、射线、直线、角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,虽然知道三角形由3条线段围成,但是对于“任意的3条线段不一定都能围成三角形”这一知识却没有任何经验。学生对三角形任意两边之和大于第三边的规律只是停留在生活经验的基础上,只能初步感悟笔直的路比拐一个弯要近。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,还可以在动手操作、体验理解、思考探索、生活应用等方面发展学生的思维,提高解决实际问题的能力,同时也为进一步学习三角形的分类、三角形内角和、三角形的面积、甚至初中的勾股定理、三角函数等内容打下坚实基础。

教学目标。

1.经历用小棒围三角形来探究三角形三边关系的过程,发现、理解三角形任意两边的和大于第三边以及两点之间的所有连线中线段最短,并运用这一发现解决生活中的实际问题。

2.在探索活动过程中,积累猜想、观察、分析、对比、计算、比较、归纳、验证等数学活动经验和方法,培养学生的动手操作能力和策略意识。

3.渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。

教学重点。

探索并发现三角形任意两边的和大于第三边。

教学难点。

较短两根小棒的长度和等于第三根时能不能围成三角形。

教学准备学生用小棒(每组5根)、记录单、教学课件。

教学过程。

一、情景导入。

生:围不成三角形。

师:其他同学同意吗?

师:为什么会围不成?(长的太长)。

师:你们觉得怎么样就能围成三角形?

生:缩短最长边。

师:我们试试看。(缩短最长边)最长的钢管变短后还真围成了。

师:看来并不是任意三根钢管都能围成三角形,三角形三条边的长度之间一定是有关系的,那会有什么关系呢?今天我们就一起探索三角形边的关系。

1.围三角形的活动。

师:接下来我们就借助小棒进行研究,每个信封中有4根小棒,上面标有小棒的长度。两人一组,每次任选3根小棒围一围,看能不能围成三角形,把围的结果写到记录单上。好,开始活动。

(学生活动)。

引导认为358厘米能围成的同学:358厘米这组小棒能不能围成?确实是围成了(师拍照)。

引导认为358厘米围不成的同学:358厘米这组小棒能不能围成?说说为什么围不成?3加5正好等于8,和8厘米的小棒就重合了(师拍照),当3厘米和5厘米的小棒拱起来时就更不能和8厘米小棒的端点重合了。可人家还真有人围成了(师操作)你们觉得这围成了没有?是啊,看似围成了,实际上小棒的端点并没有重合,还差一点点。所以这三根小棒围不成。如果让同学们知道了你这种想法,大家一定会很佩服你的。

2.汇报围三角形的情况。

(尽可能让认为358厘米能围成的学生先汇报)。

师:大家看看有哪些数据和你们的结果不一样?

预设一:若学生有不同意见。

预设二:若学生没有不同意见。

师:(生说师打问号做标记)还有不同的吗?打问号的小棒能不能围成三角形?我们怎么办呢?(怎么验证我们的猜测?)。

生:再来围一围。

师:是个好办法,那就听大家的,我们再围一围。(学生活动)。

师:这是我刚拍到的照片(解决能围成的情况)。

358厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?

生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)。

生:没围成。(说说你的理由?)。

(把照片放大)。

师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)。

你觉得这三根小棒能围成三角形吗?请说出你的理由?(生述)。

师评价:谢谢你,你的表达真清楚。

358厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?

生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)。

生:没围成。(说说你的理由?)。

(把照片放大)。

师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)。

你觉得这三根小棒能围成三角形吗?请说出你的理由?

3.探究围成三角形的条件。

师:同样是三根小棒,为什么有些能围成三角形,有些就围不成?对比这些数据和图形,你们发现了什么?先独立思考,然后将你的想法在小组内交流。

师:谁来和大家分享一下你们的发现?

预设一。

生:较短两根小棒的和大于第三根就能围成三角形;较短两根小棒的和小于或等于第三根就围不成。

师评价:说的真好!真是一名善于思考和总结的孩子。能举例子说说吗?

生:345厘米,3+4〉5,所以能围成三角形。348厘米,3+4〈8,所以围不成;358厘米,3+5=8,也围不成。

(生说出时师板书)。

(生说不出时师引导:3加4大于5,3加5呢?)。

师:同桌口算一下边长458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。

师:这个三角形的三条边是不是也有这样的关系?(是)。

若学生说不出:师:这是哪两边的和大于第三边呢?

这两边的和3加4大于5,3加5大于4,4加5大于3。

生:三角形每两边的和大于第三边。

师:明白他的意思吗?谁能用你的话说一说。

生:三角形哪两边的和都大于第三边。

师:什么叫哪两边的和都大于第三边?(生述)。

师:理解的非常到位,每两边也就是任意两边。

师:谁来汇报一下你是如何验证的?

生:*+*〉**+*〉**+*〉*。

师:刚才我发现有一位同学的方法比较特别,(出示照片)(若出现这种情况:说说你为什么只计算较短两边的和大于第三边?)(若没出现这种情况:谁知道为什么只计算较短两边的和大于第三边?)。

师:(生若说不出)最长边比另外两边都长,最长边无论加哪条边都比另一条边要长,所以就没有必要算了,只算较短两边的和大于第三边就可以了。

师评价:多么有创意的想法,有深度的思考,分析的太透彻了。这是判断能否围成三角形的最快方法。

师:有没有谁画的三角形,三边关系不符合这个结论的?有没有呢?

师:看来所有三角形任意两边的和都大于第三边。

预设二。

生:我发现三角形任意两边的和大于第三边。

师:你严谨准确的语言和高度概括的能力很值得我们学习。能举例子说说吗?

生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3。

(学生说,师板书)。

师评价:说的真好!你真是一位善于表达的孩子。

师:谁能将这个三角形三条边长度之间的这种关系,用自己的话说一说?

生:三角形每两边的和大于第三边。

生:三角形哪两边的和都大于第三边。

师:同学们理解的都非常到位,同桌口算一下458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。

师:这个三角形的三条边是不是也有这样的关系?(是)。

预设三。

生:只要随便两边的和大于第三边就能围成三角形。

师:听了他的发言,你想说什么?

生:可3,5,8厘米,5+8大于3,但也围不成呀?

师评价:正是由于这位孩子用心倾听、深入思考才有了与众不同的发现,感谢你为我们带来了新的思考。

师:5+8大于3,3+8也大于5,为什么围不成呀?

生:可是3+5等于8,所以就围不成。

生:三角形每两边的和大于第三边。

师:明白他的意思吗?谁能用你的话说一说。

生:三角形哪两边的和都大于第三边。

师:什么叫哪两边的和都大于第三边?(生述)。

师:理解的非常到位,每两边也就是任意两边。

师:谁能举例子说说这句话的意思?

生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3。

师评价:说的真好!仅仅用3个式子就很清楚的让我们理解了任意两边的和大于第三边。

师:同桌口算一下458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。

师:这个三角形的三条边是不是也有这样的关系?(是)。

四、应用所学,解决问题。

***身高米,腿长米,有人说他一步能走2米。你同意他的说法吗?

预设一。

预设二。

生:一步不可能走2米。因为+小于2,所以一步不可能走2米。

师:你们觉得他一步(最多)能走多长?

生:米。

师:我们掌声请出***给大家走个米。

师:我想这是***十多年来第一次迈出这样的步子,***不可能就这样走吧?

生:不可能。

生:三角形任意两边的和都大于第三边,+应大于一步的长度,所以一步的长度要小于米。

生:走路时两腿与地面形成一个近似的三角形,+小于2就围不成三角形,所以不可能走2米,即使劈叉也不可能走2米。

师:什么是劈叉?谁能示范一下?(生劈叉)。

师:我想这是***十多年来第一次迈出这样的步子,***不可能就这样走吧?

生:不可能。

师:正如这位同学所说,走路时两腿的长度与两脚间的距离构成一个近似的三角形,三角形任意两边的和都大于第三边,+应大于一步的长度,所以一步的长度要小于米。

师小结:真聪明,真会学以致用。看到同学们学的这么认真,而且能用所学的知识解决实际问题,明明也想请大家帮帮忙。

2.还记得明明做三角形航模底座的事吗?

生:把10厘米的钢管据成7厘米。

师:谁知道他为什么要这样想?

生:3+5>7,就能围成三角形了。

师:孩子,你是这样想的吗?(是)。

师:是不是只能锯成7厘米?还可锯成?

生:6厘米、5厘米、4厘米、3厘米、2厘米、1厘米。

(学生对2分米和1分米两种情况进行质疑并发现锯成2分米和1分米不行)。

师:最长可锯成几分米?最短呢?可以有几种情况?

师评价:集体的力量真大,把这个问题的方方面面都想到了。

师小结:说的真好,做成等腰三角形的底座确实好看多了。

(3)我们还能不能帮明明做出更加美观的边长整厘米的三角形底座?

(出示等边三角形底座图)怎么做?

生:剪成3个1厘米……师:为什么要这样剪?(三边相等更美观)。

师:还有别的方法吗?

生:2厘米,3厘米,4厘米,5厘米(师:4厘米怎么剪?5厘米怎么剪?)。

(4)按这几种想法做出的三角形底座就更漂亮了,如果你是明明,会给自己的航模选哪种底座?请说说理由。

五、课堂小结。

这节课上我们由刚上课时发现问题,提出问题到课堂上的分析问题,再到刚才的解决问题,尤其是在做航模底座的问题中,经历了做不成-能做成-更美观-实用性的系列研究过程,不仅学到了数学知识,还学到了数学的思想和方法,积累了数学活动的经验,这就是学习数学的价值所在。

教育咨询与教学设计的关系【第四篇】

1.经历动手操作、探索发现、猜想验证,发现揭示并初步应用三角形三边关系即“三角形的任何两边之和大于第三边”的活动过程,发展空间观念,培养初步的逻辑思维能力、动手操作能力,体验“做数学”“用数学”的乐趣。

2.经历探索、发现、应用三角形的三边关系的过程,增强勇于探索的精神,体会数学的实用价值,感受数学的严谨和探究数学成功的喜悦,增强数学应用意识和交流合作精神,提高学生的数学素养。

创设情境,激发兴趣。

(背景资料:姚明身高米,体重,腿长约米)。

1.分组实验:

每组准备四根木条或硬纸条,分别长为4cm、6cm、7cm、11cm尝试实验从其中任取三根首尾顺次相接来摆三角形,试试是否成功?做好实验记录.

2.交流发现:

问题1:是不是任意三条线段都能组成三角形呢?说说哪次试验是失败的,为什么?

问题2:从实验中你能发现什么呢?

教育咨询与教学设计的关系【第五篇】

教学时间:

教学内容:93页1-4题,练习二十1-5题。

教学目标:

知识:通过复习进一步理解100以内笔算加减法的.法则。

能力:提高正确率和熟练程度,一般要达到每4分钟4题。

教学重难点:正确准确地进行100以内的加减法计算。

突破方法:讲解法、练习法。

教具:小黑板、投影机、

教学过程。

一、前提测评。

2、教师读题。

3、做练习二十的第2题。

二、笔算。

1、做书上95页第2题和第3题。

2、做书上93页第1题]。

3、做练习二十的5题。

三、复习文字叙述题。

1、做练习二十3题。

2、做练习二十4题。

四、复习连加连减混合运算:

书上95页的第4题。

五、作业。

板书设计:

教后经验与失误分析:

相关推荐

热门文档

22 3236604