首页 > 学习资料 > 教学设计 >

教育研究人员的数乘分数教学反思汇聚8篇

网友发表时间 3069138

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“教育研究人员的数乘分数教学反思汇聚8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

教育研究人员的数乘分数教学反思【第一篇】

反思本节课,无论是教学目标的定位,还是教学过程的组织,应该说都反映出一种新的教学理念。我认为成功之处主要有以下三个方面:

新课程标准指出:“要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感和态度。”为此,教师在教学中要让学生能真正主动地、投入地参与到探究过程中来,就应设法让其在一开始就产生探究的内在需要是非常关键的。这就需要老师既兼顾知识本身的特点,又兼顾学生的认知特点和学生已有的水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,从而产生“我也来研究研究这个问题”的兴趣。这节课一开始,我就让学生经历折纸操作——合作交流——寻找计算方法这一过程,使学生发现并掌握分数单位乘分数单位的计算方法。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情特别高涨,兴趣特别浓厚,都想通过自己的努力,寻找出“我的发现”。而自己寻找出的法则印象特别深,同时又产生了继续探究、验证两个一般分数相乘的计算方法的欲望。

传统教学是教师利用复合投影片等手段,让学生理解“分数乘分数”的算理,再利用其计算法则进行大量练习,以达到“熟练生巧”的程度。“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。因此,本课时力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养,我深信这比单纯掌握计算方法再熟练生巧肯定更有意义。

新课程标准指出:“…帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”所以教师在引导学生经过不断的思考去获得规律的`过程中,着眼点不能只是规律的本身,更重要的是一种“发现”的体验,在这种体验中感受数学的思维方法,体会科学的学习方法。本课时从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或“分子相乘,分母相乘”的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”的特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。

如何去关注全体参与?本课时的第一阶段研究“几分之一乘几分之一”时,由于学生是在自己操作的基础上去发现规律,所以全体学生兴趣高涨,都积极主动地参与到了探究的过程中去。而到第二阶段去验证交流“几分之几乘几分之几”的过程中,除了用折纸法验证交流外,其余的几乎都被几名“优等生”所“占领”,虽然教师多次这样引导:“谁能听懂他的意思?你再能解释一下吗?”“用他的方法去试试看。”但部分学生还是不能参与其中,成了“伴学者”。所以,如何面对学生的差异,促使学生人人能在原有的基础上得到不同的发展,还是课堂教学中值得探索的一个课题。

教育研究人员的数乘分数教学反思【第二篇】

《分数乘分数》一课上完后,我无比的激动,因为我的尝试得到了成功。

当然也有好多不足之处。这节课上下来,自己感到在以下三方面要加以反分数乘分数的算理。即为什么分母相乘的积做分母,分子相乘的积做分子(实际上是数出来的)。的确,我对单位1的考虑略有欠缺,这一难点未能以重视,因此学生即使会计算了也不清楚为什么折纸就可以找到原因了。

其次教师的指令不够清楚。教师在指导学生研究分数单位相乘时,试图体现教学的层次(在学生做的前测中可以发现有五分之二的学生已经会算此内容了),想对层次好的学生放得开些,就把原来的设计由教师发出清晰的指令改为让需要帮助的学生看提示,也不加指导。问题就出在这里:学生不来看你的提示,不按你的要求来折,效果大折扣。

第三,师生在课堂上的交流非常重要。我们看到一些好的课师生配合很和谐,而有些课上得很差是因为学生不来理你,这其实就是教师的功力深浅所在。好的老师会让学生明白要干什么,说什么;也会知道学生在想什么,在说什么,会耐心地听完学生的回答。而我往往不是诚心诚意地听学生的说话,不知道应该怎样使学生奇怪的回答与自己的轨道结合起来。比如:学生提出半个苹果的一半可以列式为1自己就未加以肯定,这是非常遗憾的。因为他的回答非常好,可以帮助理解单位1。可以追问:第一个 和第二个 意思是不是一样的?多可惜。

又比如:学生已经说出 的算式,自己虽然也肯定了他,但为什么不肯把这个算式写到黑板上呢?再追问一句:你们认为他是怎么想的?你能折出来吗?不是很好吗?错失了良机。

最遗憾的是:有个学生上来演示,他是先计算再折纸的,而我却没有发现。教师应该有快速地提取和处理信息的能力,这是必须磨练的基本功。

教育研究人员的数乘分数教学反思【第三篇】

分数乘法计算对于学生而言是新的内容,它的计算方法与整数、小数的计算方法有很大区别,记住分数乘法的计算法则并不困难,但让学生理解分数乘法的算理,尤其是分数乘分数的算理,是本节课教学的难点,分数乘法(分数乘分数)教学反思。

《标准》指出,有效的学习活动不能单纯地依赖模仿与记忆。教学中要改变以往以例题、示范、讲解为主的教学方式,改变以记忆法则,机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中。

学习这节课前,我先让学生自学,让他们试着去解决课本上的几个问题:

课上让学生交流探索的结果,教学反思《分数乘法(分数乘分数)教学反思》。我发现大部分学生能在前一问的基础上可以类推出分数乘分数的方法。

有的学生采用了折纸的方法,一步步的给大家讲解,效果也不错。

学生讲解的头头是道,说实话,这节课给了我很大的震撼,千万不要低估学生的能力,该放手时一定要放手让学生去做,很多时候他们会给你意想不到的惊喜!

整节课的大部分时间都是安排学生的探究、讨论活动,让学生在讨论研究中提出猜想,最后在举例中检验猜想后达成共识,得到分数乘分数的计算法则,理解算理,由于学生的探究花了大量时间,最后只是对法则进行了总结,从时间的分配上来说,后面的巩固练习时间很少,学生对分数乘分数到底掌握到什么情况心中没数。这让我想到,我们在课堂上无论事先设计的多么完善,都要根据学生的实际情况,跟着学生的思路走,而不能死套教案,一定要灵活处理。

遗憾的地方:能讲解的学生毕竟是少数,大部分的孩子是听会的,个别学生对算理仍然不能很好的理解,对后续学习会有一定影响,对这部分学生要多帮助、多鼓励,树立他们的信心!

教育研究人员的数乘分数教学反思【第四篇】

“分数乘分数”这课时是在学习了分数乘法的意义、分数乘整数、整数乘分数后进行教学的。就分数乘法在而言,在掌握了法则以后,计算并不复杂,况且,我执教的班级所用的教材是“现代数学”,学生基础较好,思维活跃,敢于各抒已见。因此,在本节课中我试图改变传统的“精讲多练”做法,尽力放大其法则的探究过程。现摘录三个主要片段。

生: × =

(1)请你们用折的方法,表示出一张长方形纸的 ,把折出的 用斜线表示。

(2)把画斜线的几分之一看作单位“1”,再折出它的 ,请把这个

用方格线表示。

(要求:四人小组可以商量,但折出的几分之一大家最好各不相同)

(3)把操作活动用算式表示出来,打开纸看看方格线所表示的占整个长方形纸的 ,再写出结果。

(2)算式:

× = × = × = × =

(1)读读以上这些算式,对于分数乘分数,你有什么发现?

(2)小组讨论,发现、归纳、小结,师板书:

分母相乘作分母,分子不变。 或: 分母相乘作分母,分子相乘作分子。

× × × (学生猜结果,说理由:分子相乘作分子,分母相乘作分母)

生:不行,只有分子都是1的分数相乘才能用“分子不变,分母相乘”的这个方法去计算。

(1)小组讨论方法:

(2)汇报:

先折出一张纸的 ,画上斜线;再折出 的 ,画上方格,打开纸,用方格线表示的占整个图形的 。

因为: =0。75 =0。4 所以:0。75×0。4=0。3=

因为 里有4个 ,所以: × = ×4× = =

同理: × = ×4× ×2= =

1、学生自学课本第43页“因为整数可以看成分母是1的分数……”这段话。

2、自学汇报:你能读懂这段话吗?举个例子说说。

学生举例,如 : ×3 = × = ……

3、你觉得他讲得怎么样?也能举个例子吗?

4、小结:同学们说得好,凡是有分数的乘法,都可以用今天所学的法则来进行

反思本节课,无论是教学目标的定位,还是教学过程的组织,应该说都反映出一种新的教学理念。我认为成功之处主要有以下三个方面:

新课程标准指出:“要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感和态度。”为此,教师在教学中要让学生能真正主动地、投入地参与到探究过程中来,就应设法让其在一开始就产生探究的内在需要是非常关键的。这就需要老师既兼顾知识本身的特点,又兼顾学生的认知特点和学生已有的水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,从而产生“我也来研究研究这个问题”的兴趣。这节课一开始,我就让学生经历折纸操作——合作交流——寻找计算方法这一过程,使学生发现并掌握分数单位乘分数单位的计算方法。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情特别高涨,兴趣特别浓厚,都想通过自己的努力,寻找出“我的发现”。而自己寻找出的法则印象特别深,同时又产生了继续探究、验证两个一般分数相乘的计算方法的欲望。

传统教学是教师利用复合投影片等手段,让学生理解“分数乘分数”的算理,再利用其计算法则进行大量练习,以达到“熟练生巧”的程度。“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。因此,本课时力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去悟、去经历、去体验,去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养,我深信这比单纯掌握计算方法再熟练生巧肯定更有意义。

新课程标准指出:“…帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。” 所以教师在引导学生经过不断的思考去获得规律的过程中,着眼点不能只是规律的本身,更重要的是一种“发现”的体验,在这种体验中感受数学的思维方法,体会科学的学习方法。本课时从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或 “分子相乘,分母相乘”的计算方法,再由学生自己用折纸、化小数、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”的特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。

如何去关注全体参与?本课时的第一阶段研究“几分之一乘几分之一”时,由于学生是在自己操作的基础上去发现规律,所以全体学生兴趣高涨,都积极主动地参与到了探究的过程中去。而到第二阶段去验证交流“几分之几乘几分之几”的过程中,除了用折纸法验证交流外,其余的几乎都被几名“优等生”所“占领”,虽然教师多次这样引导:“谁能听懂他的意思?你再能解释一下吗?”“用他的方法去试试看。”但部分学生还是不能参与其中,成了“伴学者”。所以,如何面对学生的差异,促使学生人人能在原有的基础上得到不同的发展,还是课堂教学中值得探索的一个课题。

教育研究人员的数乘分数教学反思【第五篇】

紧张的三天时间过去了,对于我来说,仿佛经历了一个重大的抉择,我是一个心里素质极差的人,有人说,我为什么还要不断地把自己的博文写下去,不是为了别人,不是为了做给人看,而是做给自己知道,让自己知道自己有那么多的不足之处,能够不时的检视自己,审察自己,更能不断地提醒自己,自己是一个永远需要各方面营养填充的个体,也是一个需要不断纠正自己的人。

在这节课中,有两点没能做做到的地方,一个是在教学过程中,没有引领孩子们看到把1/2公顷平均分成了4份,也就是把1公顷平均分成了8份,这样学生在思维上就没有形成一个良好的过渡,孩子们不能在脑中形成清晰的认识,认识不到求1/2公顷的1/4是多少,求的是1/8公顷,分母代表把1公顷一共平均分成的份数,分子1代表取了其中多少份。面对孩子们的困惑,正是由于在指导上的缺失,才失孩子们不能更好的理解到这一点,要想让孩子有大视角,我们必须先要有大视角。

第二,能让孩子们更具体的感受到,分子乘分子的积代表什么,分母乘分母的积代表什么,只能说,我们无论想到了多少,如果只是一味地关注我们自身,都会影响到我们自己做的事,就如同墙角的花,当我们孤芳自赏时,天地变小了,一切都是我们自己的错,只有在一种忘记自我的状态中,才能做的更好,也许这是一条永远都要坚持的理念。

当然,此次活动,也让自己看到了自己的另一方面不足,没能请同事深入到自己的课堂之中,只有别人才能真正看清自己缺失的地方是哪些,也只有一针见血的`指出,才会让我们前进的步伐更稳键。

生活给予我们的挑战也许更是一个个地机会,更是一次次促进自己的方式,在这样的角度看来,压力更能让人进步,让自己更适应不断变的形式,让自己更能成为一个掌控自己的人,比什么都重要!

教育研究人员的数乘分数教学反思【第六篇】

通过本节课的教学,我认为有以下几点值得反思:

1、通过学习教材理论的材料,我认识到,数学课程标准的核心是促进学生的发展,强调改变学生的学习方式,强调即要关注学生的未来生活,又要关注学生的现实生活,在学生中更要关注学生的情感、态度及价值观,要引导学生主动参、主动探究、主动合作。

2、教学安排要建立在学生的实际水平上。

在这次讲课过程中我发现自己把学生对知识的掌握程度估计的过高,造成教学过程进行的不是很顺利。说明在平时的教学中对学生完整解题过程的训练的不够,很多知识点渗透的.不到位。

3、教师要为学生营造一种轻松的学习氛围。

学生在一种放松的状态下更有住于思考,更容易发言。这节课中由于我的引导过多,使得学生一直在按照我的思路思考,从某种程度上制约了学生的思考空间,造成课堂气愤很沉闷。课堂效果不是很好。

4、注重对学生习惯的培养。

5、要有充分的课堂准备。

6、要给学生留有足够的探索和交流的空间。

在讲到这节课的关键部分也就是三道应用题的比较,让学生找出联系和区别时应该给学生充分自主深究和合作交流的时间,学生之间互相交流一下可能会比自已干想效果会更好,同时交流也能互相促进。

最后,教师应为学生营造一个民主、和谐、宽松的课堂环境,让学生在这样的环境中弛聘联想,畅所欲言,达到相互启发,集思广益,获得更多的创造性见解之目的。

教育研究人员的数乘分数教学反思【第七篇】

在教学中为了突破教学的难点,使学生能够真正理解分数乘法计算法则的算理,一开始我就请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?,通过对长方形纸的涂色,很好的揭示这一道理。将抽象的算理与直观的示意图结合起来,使抽象思维和形象思维结合起来。在解决算理时,通过数与形之间的对应和转化,从而启发计算思维。比如画斜线的1份占1/2的1/4,此时的单位"1"是1/2,但是对于整个长方形来说是1/8,此时的单位“1”是一个长方形。

二、关注算理的推导。

“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。因此,本课时力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。

新知教学时我出示“1/2×1/3”猜一猜这个算式表示什么意义?我提示学生想一想分数与整数的意义看一看适合分数与分数相乘吗?最后学生得出,“1/2×1/3”表示二分之一的三分之一是多少。这时,我告诉学生这道算式也可以表示三分之一的二分之一是多少。我想肯定有同学能够很好掌握,可是肯定也会有一部分学生不能理解,于是我接着要求学生用画图的形式表示出这个算式的意义。这样既可以帮助学生自主地理解分数与分数相乘的意义也加深学生对“分数与分数相乘”计算法则的理解。

当学生画出这个算式所表示的意义时,我问学生,从图中你能看出“1/2×1/3”的结果吗?学生一下子就说了结果1/6,然后我又出了几个分数与分数相乘的算式要求学生先画图再说出得数这样经过几次动手操作,学生对分数乘法的计算有了深刻的理解。

三、注重学法的渗透。

本课时从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或“分子相乘,分母相乘”的计算方法,再由学生自己用画图、折纸、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”的特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。

这样在计算教学中关注学生的自主探究,让学生自己去做、去悟、去经历、去体验,去创造,既培养了学生合作意识,提高学习的自主性,又使学生在理解掌握方法的同时提高解决问题的能力,形成良好的数学情感与价值观。

教育研究人员的数乘分数教学反思【第八篇】

在备课时一直被如何处理分数乘法意义困惑。后来想一想,如果从数学应用的角度来看,学生只要能从具体的问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的.关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。想明白了这一点,回头看看过去的教学,在这方面好像就真的把问题复杂化了。

本单元的重点有两个:一是乘法意义的拓展及简单的应用,二是分数乘法法则的掌握。从教材整体编排上看,这两个重点是交织在一起的:

分数乘法(一)通过对具体问题的解决使整数乘法意义迁移到分数乘法,并使学生在解决问题的过程中理解分数乘整数的计算法则,能正确熟练的计算分数乘整数,正确熟练的解决一些简单的实际问题。

分数乘法(二)通过对具体问题的解决,使乘法的意义得到拓展,认识到“求一个数的几分之几是多少”也用乘法,并能正确地应用之解决实际的问题。

从以上的分析来看分数乘法(一)作为本单元的起始课就有着至关重要的作用。

在教学中我先放手让学生解决教材上提供的具体问题,在讲评的过程中,有意识的分为两个层次:一是通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,二是运用分数乘整数的意义解释计算的地过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。“涂一涂、算一算”的重点放在“涂”上,使学生巩固意义,同时通过以形论数理解计算的道理。试一试的重点则在分数乘整数计算法则的总结。这节课的教学过程概括起来:以分数乘整数的意义为起点,以分数乘整数的法则为归宿。

今天教学的内容是分数乘法(二),重点是分数乘法意义的拓展——“求一个数的几分之几是多少”,这部分内容既是这个单元的重点,也是这个单元的难点。

从学生认识过程来看,这部分知识的基础是分数意义和整数乘法的意义。在教学中我突出了类比迁移和数形结合的方法,首先改编了教材的例题——“小红有6个苹果,笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,根据呈现的已知条件学生提出数学问题:“笑笑有几个苹果?淘气有几个苹果”然后教师引导学生先用图形表示出“笑笑的苹果数是小红的2倍,淘气的苹果数是小红的1/2”,再列出算式,最后尝试解释算式表示的意义。这样把将分数意义以图的形式呈现,做到“以形论数”,在通过对图的理解抽象出问题实质就是求“一个数的几倍(几分之几)是多少”,运用类比的方法得出“求6的2倍是多少”和“求6的1/2是多少”都用乘法,进而列出算式,完成“以数表形”,使学生理解“求一个数的几分之几是多少”用乘法的道理。

今天的教学内容是分数乘法(三),重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。

数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:

一、引导学生通过用图形表示“一尺之捶,日取其半,万世不竭”的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

二、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。

三、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算积累认知。

可以说整体教学的效果很好。

通过今天的课我有了一下的认知:

(二)中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法(三)中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。

在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。

单元小结。

第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理这三节课,对在新课程背景下的数学训练有了一些新的认识:

“训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。

2在新课程背景下,我们需要什么样的数学训练。

数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。

(1)、说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。

(2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。

(3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。

数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。

根据以上的思考自己在这三节课的教学是这样安排的:

第一节:

2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。

3单位转化,初步应用分数乘法意义解决实际问题。

第二节:

1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。

2集体交流,剖析解题的思路。

3专项训练,理解分数条件(图形表征、语言叙述)。

4巩固练习,渗透对应思想。

相关推荐

热门文档

22 3069138