首页 > 学习资料 > 教学设计 >

数轴教学设计【优秀4篇】

网友发表时间 2055722

【前言导读】此篇优秀范文“数轴教学设计【优秀4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

教法建议【第一篇】

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

知识结构【第二篇】

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义

三要素

应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴

原 点

正方向

单位长度

帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数

比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

初一数学数轴教案【第三篇】

课题:数轴

编写:审阅:

班级学号姓名使用日期_________

学习目标

1、利用数轴比较两个数的大小;用数轴帮助深化对数的认识;

2、探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;

3、感受点在数轴上左右运动时,所表示数的大小变化。

导学提纲

1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;

并比较-3与-1,与1的大小关系。

2.观察数轴,比较正数、负数、0的大小关系。

展示交流

活动一:

1.在数轴上画出表示-5,3,-1,0,4的点。你能将这些数从大到小排列吗?说说你这样排列的理由。

°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2;-1、0和-3,-4的点,它们的位置关系如何?

3、把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?

活动二:

1.比较下列各组数的大小

(1)5和0(2)-和0(3)-3、0、(4)-和-

2、在数轴上画出下列各数的点,并用“<”将它们连接起来。

4,-,0,-,

盘点收获

课堂反馈

1.课本P18-19练一练1、2、3

2.在数轴上,到原点距离不大于2的所有整数是;

3、如图,在数轴上有三个点A、B、C,请回答:

(1)将点B向左移动3个单位后,三个点所表示的数谁最小?

(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?

(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?

(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?

迁移创新

利用数轴回答:

(1)写出所有不大于4且大于-3的整数:;

(2)不小于-4的非正整数是;

(3)比-2大的数是;-3比-6大。

课堂作业

课本P19习题3、4

初一数学数轴教案【第四篇】

一、学习目标:

1、什么是数轴?数轴上的点和有理数的对应关系?

2、你会用数轴上的点表示给定的有理数吗?会根据数轴上的点读出所表示的有理数吗?

二、学习重点:

会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

三、学习难点:

利用数轴比较有理数的大小

四、学习过程:

(一)自主学习课本,回答问题:

1、像这样规定了、和的直线叫做数轴

2、数轴与温度计作类比,真像一个平放的________+3用数轴上位于原点___边___个单位的点表示,-4用数轴上位于原点___边___个单位的点表示,原点右边个单位的点表示____,原点左边个单位的点表示_____.

(二)精讲点拨

1、完成例1

2、请画一条数轴表示下列有理数

+4,-1/2,1/2,-,-4,0。

3、完成第10页第1、2题。

(三)、寻找规律,探究新知

1、观察以上数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?

2、在数轴上,表示4与-4的点到原点的距离各是多少?表示-1/2与1/2的点到原点的距离各是多少?由此你又有什么发现?

3、什么是绝对值?绝对值怎么表示?

(四)、巩固练习:

1、完成课本第11页练习1、2、3两题

2、在数轴上,表示数-3、、+2、0、-1的点中,在原点左边的点有个。

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

3、与原点距离等于4的点有个?其表示的数是。

4、在数轴上,点A、B分别表示-5和2,则线段AB的长度是。

5、在数轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是()

A.-5,B.-4C.-3D.-2

6、你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

五、谈谈你这堂课的学习体会

六、课后作业:

1、在数轴上表示-4的点位于原点的___边,与原点的距离是___个

单位长度。

2、在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是

3、数轴上与原点距离是5的点有___个,表示的数是___。

4、从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是____,再向右移动两个单位长度到达点C,则点C表示的数

是____。

5、数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移

动5个单位长度,那么终点到原点的距离是_____个单位长度

6、在数轴上P点表示2,现在将P点向右移动两个单位长度后再向左移

动5个单位长度,这时P点必须向___移动___个单位到达表

示-3的点

7、在数轴上表示-2的点离开原点的距离等于()

A、2B、-2C、±2D、4

8、请画一条数轴表示下列有理数

+3,-4,-,-,2,0。

更多精彩内容请点击:初中>初二>数学>初二数学教案

正数与负数导学案

一。学习目标:

1、什么是正负数?生活中有哪些相反意义的量?

2、有理数是怎样分类的?

二。学习重点难点:

1、重点:会用正负数表示实际生活中具有相反意义的量

2、难点:正负数的概念,有理数的分类。

三。学习过程

(一)、自学课本1--5页,回答以下问题?

1、举例说明正数和负数概念,写法及读法?

2、正数和负数可以表示生活中具有意义的量。例如,又如。

这个数特别吗?为什么?

4、完成课本第6页练习第1题的1、2、3小题。

5、完成课本第6页练习第2题的1、2小题

6、飞机上升以正数表示,下降以负数表示,若飞机在1200米高空两次记录升降情况是+300米,-600米,这时飞机实际高度是米。

(二)、精讲点拨。

1、完成例1

交流你能举出一些用正负数表示数量的实例吗?

2、思考:

有理数

3、完成例2

相关推荐

热门文档

22 2055722