首页 > 学习资料 > 教育其它 >

圆的知识点 高中数学圆的知识点【参考4篇】

网友发表时间 2581719

【导言】此例“圆的知识点 高中数学圆的知识点【参考4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

数学圆知识点总结【第一篇】

1、圆是定点的距离等于定长的点的集合

2、圆的内部可以看作是圆心的距离小于半径的点的集合

3、圆的外部可以看作是圆心的距离大于半径的点的集合

4、同圆或等圆的半径相等

5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线

7、到已知角的两边距离相等的点的轨迹,是这个角的平分线

8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

9、定理不在同一直线上的三点确定一个圆。

10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

11、推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

12、推论2:圆的两条平行弦所夹的弧相等

13、圆是以圆心为对称中心的中心对称图形

14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

16、定理:一条弧所对的圆周角等于它所对的圆心角的一半

17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

21、①直线L和⊙O相交d﹤r

②直线L和⊙O相切d=r

③直线L和⊙O相离d﹥r

22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

23、切线的性质定理:圆的切线垂直于经过切点的半径

24、推论:经过圆心且垂直于切线的直线必经过切点

25、推论:经过切点且垂直于切线的直线必经过圆心

26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

27、圆的外切四边形的两组对边的和相等

28、弦切角定理:弦切角等于它所夹的弧对的圆周角

29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

34、如果两个圆相切,那么切点一定在连心线上

35、①两圆外离d﹥R+r

②两圆外切d=R+r

③两圆相交R-r﹤d﹤R+r(R﹥r)

④两圆内切d=R-r(R﹥r)

⑤两圆内含d﹤R-r(R﹥r)

36、定理:相交两圆的连心线垂直平分两圆的公共弦

37、定理:把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

38、定理:

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

39、正n边形的每个内角都等于(n-2)×180°/n

40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

41、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距

42、正三角形面积√3a2/4a表示边长

43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此

k(n-2)180°/n=360°化为(n-2)(k-2)=4

44、弧长计算公式:L=n兀R/180

45、扇形面积公式:

S扇形=n兀R2/360=LR/2

外公切线长=d-(R+r)

数学学习中常见问题分析

大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

正确对待考试

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

六年级数学圆的知识点总结【第二篇】

1、圆心:圆中心一点叫做圆心。用字母“O”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

2、圆心确定圆的位置,半径确定圆的大小。

3、在同一个圆内,所有的半径都相等,所有的直径都相等。

在同一个圆内,有无数条半径,有无数条直径。

在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2rr=2(1)d

4、圆的周长:围成圆的曲线的长度叫做圆的周长。

5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π表示。圆周率是一个无限不循环小数。在计算时,取π≈。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

6、圆的周长公式:C=πd或C=2πr

7、圆的面积:圆所占平面的大小叫圆的面积。

8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长x宽,所以圆的面积=πrxr=πr2

9、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2

10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是π:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线x对角线÷2=直径x直径÷2。

11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。

12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR2-πr2或S=π(R2-r2)。(其中R=r+环的宽度。)

13、环形的周长=外圆周长+内圆周长

14、半圆的周长等于圆的周长的一半加直径。半圆周长公式:C=πd÷2+d或C=πr+2r

15、半圆面积=圆面积÷2公式为:S=πr2÷2

16、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

17、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

18、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

19、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。

20、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。

21、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

22、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。

23、直径所在的直线是圆的对称轴。

圆的位置与什么有关系【第三篇】

圆的大小与半径有关系,圆的位置与圆心有关系。在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。在同一平面内,到定点的距离等于定长的点的集合叫做圆。

在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫圆。圆有无数条对称轴。

在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},其中O是圆心,r是半径。圆的标准方程是(x-a)²+(y-b)²=r²,其中点(a,b)是圆心,r是半径。

圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。

圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。

高中数学直线与圆的关系【第四篇】

高中数学直线与圆的方位置关系一

1、平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是利用判别式b2-4ac的符号可确定圆与直线的位置关系如下:

如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。

高中数学直线与圆的方位置关系二

圆上一点的切线方程

(x-a)2+(y-b)2=r2上任意一点(X0,Y0)该点的切线方程:

(X-a)(X0-a)+(Y-b)(Y0-b)=r—2

如果在平面直角坐标系中还可以直接将

直线方程: 与圆的方程: 联立得出

若判别式>0 则该方程有两个根,即直线与圆有两个交点,相交;

若判别式=0 则该方程有一个根,即直线与圆有一个交点,相切;

若判别式<0 则该方程有零个根,即直线与圆有零个交点,相离。

相关推荐

热门文档

23 2581719