初三数学教案(精选4篇)
【导言】此例“初三数学教案(精选4篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
初三数学教案【第一篇】
教学过程设计
一、创设情境 引入课题
活动1
问题:
你们还记得一次函数图象与性质吗?
设计意图
通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:
教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。
二、类比联想 探究交流
活动2
问题:
例2 画出反比例函数y= 与y=- 的图象。
(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。)
设计意图:
通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:
学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:
1学生能否顺利进行三种表示方法的相互转换:
2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;
3在动手作图的过程中,能否勤于动手,乐于探索。
比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?
(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)
设计意图:
学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:
学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较 发现规律
活动3
问题:
观察反比例函数y= 与y=- 的图象。
你能发现它们的共同特征以及不同点吗?
每个函数的图象分别位于哪几个象限?
在每一个象限内,y随x的变化如何变化?
由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y= 的性质:
形状: 反比例函数的图象是由两支双曲线组成的。因此称反比例函数的图象为双曲线;
位置: 当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;
任意一组变量的乘积是一个定值,即xy=k.
(注意:双曲线的两个分支都不会与x轴,y轴相交。)
学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的'过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育。
四、 运用新知 拓展训练
设计意图:
拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的。
师生形为:
学生独立思考完成。
教师巡视,引导学困生完成任务。
五、归纳总结 布置作业
问题:
本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?
初三数学教案【第二篇】
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
第十四章 解直角三角形
一、锐角三角函数 证明:------------------
结论:--------------------
练习:---------------------
正弦和余弦(二)
一、素质教育目标
(一)知识教学点
使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.
(二)能力训练点
逐步培养学生观察、比较、分析、概括的思维能力.
(三)德育渗透点
渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、教学重点、难点
1.教学重点:使学生了解正弦、余弦概念.
2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.
三、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.
(二)整体感知
只要知道三角形任一边长,其他两边就可知.
而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.
(三)重点、难点的学习与目标完成过程
正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.
若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则
引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.
例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.
学生练习1中1、2、3.
让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.
例2 求下列各式的值:
为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1)sin45°+cos45; (2)sin30°cos60°;
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即
0<sinA<1, 0<cosA<1(∠A为锐角).
还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”
四、布置作业
教材习题中A组3.
预习下一课内容.
五、板书设计
初三数学教学设计【第三篇】
教学目标:
知识目标1.经历探索圆的中心对称性和旋转不变性的过程;.
2.理解圆心角的概念,并掌握圆心角定理。
3.理解“弧的度数等于它所对的圆心角的度数”这一性质。
能力目标体验利用旋转变换来研究圆的性质的思想方法,进一步培养学生观察、猜想、证明及应用新知解决问题的能力。
情感目标用生活的实例激发学生学习数学的浓厚兴趣,体验数学与生活的密切联系,坚定学好数学的信心,进一步培养学生尊重知识、尊重科学,热爱生活的积极心态。
教学重点:圆心角定理
教学难点:根据圆的旋转不变性推导出圆心角定理
教学过程:
一、设疑引新
你可曾想过:水杯的盖子为什么做成圆形?利用了圆的什么性质?
前面我们已经探究了圆的轴对称性,利用这一性质我们得到了垂径定理及逆定理,它帮助解决了圆的许多问题,那么圆还有哪些性质呢?
二、探究新知
1、圆绕圆心旋转180°后,仍与原来的圆重合——圆是中心对称图形,圆心是对称中心。
2、圆绕圆心旋转任意一个角度后,仍与原来的圆重合——圆的旋转不变性。集体备课《圆心角》解决课前疑问。
3、顶点在圆心的角叫圆心角。如图,集体备课《圆心角》就是一个圆心角。判别下列各图中的角是不是圆心角,并说明理由。
4、探究圆心角定理:
集体备课《圆心角》(1)实验操作:设集体备课《圆心角》,把∠COD连同集体备课《圆心角》、弦CD绕圆心O旋转,使OA与OC重合,结果发现OB与OD重合,弦AB与弦CD重合,集体备课《圆心角》和集体备课《圆心角》重合。
(2)让学生猜想结论,并证明。
(3)同圆变等圆,结论成立。
5、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等(补充)。
几何表述:∵∠AOB=∠COD∴集体备课《圆心角》=集体备课《圆心角》,AB=CD,OE=OF
分析定理:。去掉“在同圆或等圆中”定理还成立吗?
反例:两个同心圆,显然弦AB与弦CD不相等,集体备课《圆心角》与集体备课《圆心角》不相等。
集体备课《圆心角》提醒学生注意:定理的成立必须有大前提“在同圆或等圆中”。
6、应用新知:
例已知:如图,∠1=∠2.求证:集体备课《圆心角》
变式已知:如图,∠1=∠2.
求证:AC=BD.,∠OBC=35°,
求弧AB的度数和弧BC的度数。
9、拓展提高:
集体备课《圆心角》三、课堂小结
通过本节课的学习,你对圆有哪些新的认识?
1.圆是中心对称图形,圆具有旋转不变性。
2.、圆心角定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等
3、弧的度数:
1?的圆心角所对的弧叫做1?的弧。
弧的度数等于它所对的圆心角的度数。
四、作业布置
作业本节
7、再探新知:你能将⊙O二等分吗?
用直尺和圆规你能把⊙O四等分吗?
你能将任意一个圆六等分吗?
若按刚才这种方法把一个圆分成360份,则每一份的'圆心角的度数是1?,因为相等的圆心角所对的弧相等,所以每一份的圆心角所对的弧也相等。
我们把1?的圆心角所对的弧叫做1?的弧。弧的度数等于它所对的圆心角的度数。
集体备课《圆心角》写法:若∠COD=80°,则CD的度数是80°
注:不可写成集体备课《圆心角》=∠COD=80°,但可写成集体备课《圆心角》=m∠COD=80°
8、巩固新知:如图:已知在⊙O中,∠AOB=45°
初三数学教案【第四篇】
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)