首页 > 学习资料 > 教案大全 >

八年级上册数学教学计划 初二上册数学教学计划【范例5篇】

网友发表时间 2607181

【导言】此例“八年级上册数学教学计划 初二上册数学教学计划【范例5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

八年级上册数学教学计划【第一篇】

教学目标:

1.知识目标:

(1)掌握解分式方程的步骤。

(2)理解解分式方程时验根的必要性。

2.能力目标:

会按照解分式方程的步骤解分式方程。

3.情感与价值观:

(1) 培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

(2) 运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。

老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。

重点:

1.探索解分式方程的步骤,熟练掌握分式方程的解法。

2.体会解分式方程验根的必要性。

难点:如何将分式方程转化为整式方程;体会分式方程验根的必要性。

学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了<>良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。

教学准备:投影仪、各例题的标准解答过程。

教学过程:

一、课堂导入

由课本第87页(即前一节课的`内容:根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。

二、新课:

例1 解分式方程:

(1) 由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的解法。

[设计意图:课文的第一个例子是:_______,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母_____,若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子_____,这样避免了学生采用交叉相乘的方法求解]

[学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程(如: )相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点]

(2)引导学生检验刚才求得的解是否是原方程的解。

[设计意图:让学生明白将值代入原方程检验是分式方程验根的一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及]

[学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致]

[知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。

显然,这种书写不够规范。应分别代入两边验证为好]

例2 解方程:

让学生自已求解,解得_____,引入增根的概念。并说明验根除了代入原方程,还可检验各分母是否为0,从而判别是否是增根。

[设计意图:学生不明白为何代入原方程的分母或最简公分母也可验根,我设计此例的目的是让学生明白解分式方程可能会产生让分母为0的根,即增根,自然以后解分式方程要检验了]

[学情预设:在前面学习分式有关内容时,学生对于像_____是相反的关系掌握得很好,可以轻松得出 _____,这样在方程两边同时乘以_____即可。若学生没注意到这个细节,老师可稍加提示]

[知识链接:有了第一个例子,学生已经明白解分式方程的步骤,可以自行解此方程]

例3 解方程:

[设计意图:此题需要学生对分母分解因式,为解最一般的分式方程起示范作用]

[学情预设:有学生直接在方程两边乘以_____。这种方法可以,但繁琐。在学生解完之后,引导他们对在方程两边乘以最简公分母 还是乘以 进行对比。得出较简便的方法]

[知识链接:学生已经学习过分解因式 ___

三、阶段小结:

引导学生总结解分式方程的步骤:

1.在方程的两边同时乘以最简公分母,约去分母,化成整式方程。

2.解这个整式方程。

3.验根_______,引导学生对两种验根方法的优、缺点进行讨论。

[设计意图:梳理一遍解题步骤,解题思路会更清晰]

四、强化练习:

1.完成课本第90页的随堂练习。完成后学生相互交换改卷,查找错误并打分。评分标准由学生在课堂上集体商定。

[设计意图:将小结的知识点内化到学生的知识结构中。简单机械做题,有一定的效果,但效率不高。学生自测,接下去同学互改,能调动学生的积极性。在商量评分标准的过程中,学生自然体会到各个步骤的重要性。这样既完成了强化练习,又提高了学习效率]

八年级上册数学教学计划【第二篇】

一、内容和内容解析

(一)内容

直角三角形全等的判定:“斜边、直角边”。

(二)内容解析

本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法。直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形。

教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处。然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法。最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等。

基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用。

二、目标及目标解析

(一)目标

1.理解“斜边、直角边”能判定两个直角三角形全等。

2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等。

(二)目标解析

1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等。

三、教学问题诊断分析

由于直角三角形是特殊的三角形,它具备一般三角形所没有的特殊性质。例如,对一般三角形来说,已知两边和其中一边的对角分别相等,不能判定两个三角形全等,而对于直角三角形来说,已知斜边和一直角边分别相等,能够得到两个直角三角形全等。

直角三角形的斜边和一直角边确定了,根据勾股定理,得到第三边也是确定的,从而可以利用“边边边”或“边角边”证明满足斜边和一条直角边分别相等的两个直角三角形全等。但是勾股定理是后面学习的'内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理。

基于以上分析本节课的难点是:“斜边、直角边”判定方法的理解。

四、教学过程设计

(一)引言

前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法。

问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?

两个直角三角形满足的条件

全等依据

方法1

两条直角边分别相等

“SAS”

方法2

一个锐角和一条直角边分别相等

“ASA”或“AAS”

方法3

一个锐角和斜边分别相等

“AAS”

追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?

师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等。

设计意图直接进入本节课学习的内容,培养学生分类讨论的思想。让学生大胆提出猜想。

(二)探索新知

问题2:探究5

任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?

画法:

(1)画∠MC′N=90°;

(2)在射线C′M上截取B′C′=BC;

(3)以点B′为圆心,AB为半径画弧,交C′N于点A′;

(4)连接A′B′.

追问:作图的结果反映了什么规律?

你能用文字语言和符号语言概括吗?

文字语言: 斜边和一条直角边分别相等的两个直角三角形全等。(简写成“斜边、直角边”或“HL”)

五、小结反思

教师和学生一起回顾本节课所学的内容,并请学生回答以下问题:

1.这节课我们学习了哪个判定直角三角形全等的方法?

2.判定两个直角三角形全等总共有哪些方法?

师生活动:教师引导,学生小结。

设计意图回顾两个直角三角形全等的几种判定方法,形成知识体系。

六、布置作业:

教科书习题第7、8题。

八年级上册数学教学计划【第三篇】

设计理念

根据基础教育课程的具体目标,结合学习是学习者主动建构知识的过程的建构主义理论,把握学生的独立探索与教师的引导支持之间的辩证关系。教学中,给予学生充足的时间习参与学习活动,进行多向、充分的探索交流,关注学生学习兴趣的养成,让学生在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度和价值观。

教材分析

本节内容选于《义务教育课程标准实验教科书—数学》(北师大版)八年级(下)第四章第3节,本章在已学习“全等图形”和“线段的比”的基础上,以认识形状相同的图形(相似图形)为核心内容,为下一节课学习“相似多边形”作好准备。在本节课的学习过程中,经历利用坐标的变化放大(或缩小)图形,进一步发展学生数形结合意识;利用橡皮筋近似放大图形,让学生体会相似图形在现实中的应用,进一步增强学生的数学应用意识。本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。

学生分析

(1)学生已初步学习了全等三角形、平面直角坐标系和线段的比等基本知识; (2)这个年龄阶段的学生有很强的好奇心,并且有较强的观察能力,因而教学过程中尽可能多给学生表现的机会,激发学生探究意识。

资源分析

本节课利用“Z+Z智能教育平台”教学。 《超级画板》可演示利用橡皮筋近似放大图形的过程,并可以让学生在观看演示的过程中感知位似比; 《三角函数》新世纪版可演示利用坐标变化放大(或缩小)图形的过程,并可以改变平面直角坐标系的单位长度来放大(或缩小)图形,有利于学生的探究讨论。

教学目标

(1)知识与技能:感知相似图形在现实中的应用,认识形状相同的图形,感悟形状相同图形的基本含义;

(2)过程与方法:经历观察、操作、了解相似图形的过程,进一步了解形状相同图形在实际生活中的应用,掌握简单的画图方法并认识形状相同的图形;

(3)情感与能力:经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力,培养良好的情感、态度和价值观。

教学重点

(1)认识形状相同的图形;

(2)利用坐标的`变化放大(或缩小)图形。 教学难点 画图,利用橡皮筋放大图形。

教学流程

一、创设情境导入新课

课件演示课本P102的内容,并提出问题: ⑴用同一张底片洗出的不同尺寸的照片中,人物的形状改变了吗? ⑵两个足球的形状相同吗?它们的大小呢? ⑶两个正方体的形状相同吗? ⑷复印纸上对应图形之间分别有什么关系?

由学生独立思考完成,认识形状相同的图形。 导入课题:形状相同的图形。

二、直观感知探索新知

1、看一看 如图,哪些图形是形状相同的图形?

由学生观察完成,加强对形状相同图形的认识。

2、想一想 下列图形中,形状一定相同的有( )。 A。两个半径不等的圆 B。所有的等边三角形 C。所有的正方形 D。所有的正六边形 E。所有的等腰三角形 F。所有的等腰梯形 说明:本例让学生认识数学学习中的形状相同的图形,感悟形状相同图形的基本含义。

3、议一议 生活中存在大量形状相同的图形,试举出几例。

说明:本例让学生感悟实际生活中形状相同的图形,应让学生充分的思考与合作交流。

三、合作交流引申探究

1、练一练 课本P105的随堂练习: 在直角坐标系中描出点 O(0,0)、A(1,2)、B(2,4)、C(3,2)、D(4,0)。先用线段顺次连接点O、A、B、C、D,然后再用线段连接A、C两点。 ⑴你得到了一个什么图形? ⑵分别填写表1、2、3、4,你有的到了什么图形? ⑶在上述得到的四个图形中,哪些图形与原图形形状相同?

说明:本例是通利用坐标变化放大(或缩小)图形。在教学过程中,可先让学生在“Z+Z”中演示,得到感性认识,增强学生的学习兴趣。

2、议一议 根据随堂练习,请思考:一个图形各点的坐标经过怎样的变化,使所得到的图形与原图形形状相同?

说明:让学生独立思考、合作交流完成本题,使学生对利用坐标变化放大(或缩小)图形达到感性认识。

3、想一想 下列图形是在原图形的基础上做了哪些变化,变化后的图形和原图形形状相同吗?

说明:让学生认识到经历平移、旋转、轴对称变化前后的两个图形是形状相同的图形

4、做一做 课本P104的做一做: 利用下面的方法可以近似地将一个图形放大: ⑴将2根长短相同的橡皮筋系在一起,联结处形成一个结点; ⑵画一个自己喜爱的图形,在图形外取一个定点; ⑶将系在一起的橡皮筋的一端固定在定点,把一枝铅笔固定在橡皮筋的另一端; ⑷拉动铅笔,使结点沿所画图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形。 这个新的图形与已知图形形状相同。

注:应给学生足够的时间探索完成图形,并利用“Z+Z”展示画图过程,让学生感知位似比,为第9节“图形的放大与缩小”的学习打下基础。

四、归纳小结激励评价 学生总结本节课学习的主要内容及收获;

五、布置作业

1、课本P106 习题4。4 1,2,3; 2、继续进行课本P104“做一做”的活动; 3、写1篇本节课的学习日记。

说明:通过课外活动复习本节课的知识内容,激发学生探究形状相同图形的兴趣,体会数学学习在生活中的应用。

八年级上册数学教学计划【第四篇】

一、学生基本情况

本学期我所带的两个班学生人数为:八(1)47人,八(2)46人,数学基础不是很好,尤其是八(1)班学生的成绩相对其他三个班有一定的差距,从上学期期末数学测试成绩可以看出。总的来看,两个班的学生经过七年级的数学学习,基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是有所欠缺,同时作答也比较粗心。在学生所学知识的掌握程度上,已经开始出现两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,在几何中,学生在推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点帮扶和教育对象,课堂作业、家庭作业,学生完成的质量也不是太好;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正错误(考试、作业后)的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

二、指导思想

以全日制义务教育《数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。

三、教材分析

本学期教学内容,共计五章,知识的前后联系分析如下: 第12章 平面直角坐标系

本章首先通过通俗易懂、形式多样的确定位置的显示背景,是学生认识到确定物体位置的重要性;然后让学生系统地学习平面直角坐标系的基础知识;最后,在平面直角坐标系中通过图形平移引起的对应点的坐标变化规律,然学生初步体会数形结合的思想。

本章的重点是平面直角坐标系的基础知识,难点是对平面直角坐标系上点的坐标有序性的理解,对同一平面直角坐标系中图形平移前、后点的坐标变化规律的理解。 第13章 一次函数

函数是中学数学的重要内容,是中学数学中一类重要数学模型,它不仅是后继学习数学的基础,同时在物理、化学等自然科学中有着广泛的应用。函数概念比较抽象,学生理解和掌握有一定的困难,因而教科书从展现大量实际情境入手,螺旋式上升对函数概念的理解。本章内容是函数知识的入门教学,是最基本的函数知识内容。教材从不同的侧面展现实际问题中的常量和变量、自变量和函数以及他们之间的相互转化、互相依存的关系让学生从生活实例中感受常量、变量和函数的基本概念;再通过对最基本的'函数-----一次函数的图象、性质以及与方程、方程组、不等式的联系与对应关系的学习研究,初步掌握学习研究函数的基本方法,在感悟函数概念的同时,培养学生应用数学的意识与分析归纳能力。

本章的重点是函数的概念、三种表示方法以及一次函数的概念、图像与性质,能熟练地运用待定系数法确定函数解析式,能利用一次函数及其图象剞劂简单的实际问题,初步体会方程、不等式与函数的关系。

本章难点是对函数概念的理解,利用函数的图象解方程(组)和不等式,以及利用一次函数及其性质 解决简单的实际问题。

第14章 三角形中的边角关系 三角形是最简单的多边形,是研究其它图形的基础。本章是在学生已学过的一些三角形知识的基础上,

进一步系统地研究它的概念、分类、性质和应用。

本章的另一内容是形式逻辑训练的开始,然学生学习:命题的概念与结构,命题的真假及公理、定理和证明的意义以及简单的证明。

本章的重点是三角形的边角关系,以及区分一个命题的题设和结论,综合法证明一个几何命题的方法与步骤。

本章难点是区分命题的条件和结论,简单反例的构造,一个几何命题综合法证明思路的分析和证明过程的规范表述。

第15章 全等三角形

全等三角形是研究平面几何图形的基础,本章是在前面学习的基础上进一步研究全等三角形的概念、性质、判定和应用,促进学生对几何知识的认识,发展几何证明的能力和解决实际问题能力。

本章的重点是全等三角形的判定方法由于全等三角形是研究图形中线段相等或角相等的基础,学生只有掌握了全等三角形的判定方法,并能灵活应用它们,才能学好后面知识。

本章难点是探索三角形全等的条件和运用它们进行说理,以及应用全等三角形解决实际问题。 第16章 轴对称图形与等腰三角形

轴对称是现实生活中广泛存在的一种现象,本章首先学习轴对称的基本性质,欣赏并体验轴对称,密切数学与现实之间的联系,认识、描述图形形状和位置关系,进而学习与轴对称有关的图形如等腰三角形、角等内容,研究它们的性质和判定以及应用,发展图形意识。

本章重点是轴对称的性质、线段的垂直平分线、角的平分线、等腰三角形的性质和判定。

本章难点是轴对称和轴对称图形的区别与联系;线段的垂直平分线、角的平分线尺规作法的正确性的证明;线段的垂直平分线、角的平分线、等腰三角形的性质和判定的综合应用。

四、本期教学任务

通过本期的学习,掌握平面直角坐标系,学习变量间的关系、让学生初步体会函数的概念、并且进一步探究一次函数三角形中的边角关系,以及命题与证明等几何知识全等三角形以及三角形全等的条件、直角三角形全等的特殊条件,研究其基本性质,促进学生对几何知识的认识,发展几何证明的能力。通过轴对称的基本性质的学习,欣赏并体验轴对称,要使学生认识平移、旋转、和中心对称的决定因素和本质,并用它来解决相关问题,设计图案。这是在知识与技能上。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。在过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到“漫江碧透,鱼翔浅底”的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。

五、提高学科教育质量的主要措施

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷、分析试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

10、站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

六、本学期教学进度安排

八年级上册数学教学计划【第五篇】

一、教学重点

运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。

二、学情分析

从上学期的期末考试来看,学生的普遍成绩趋于中下游,数学基础一般,基础知识掌握不牢固,在错题难题方面更显能力不足,班级数学学习积极性差,数学作业完成质量低,数学提升空间很大。根据以往的经验,学生在广泛的深入的理解基础上使知识在各个方面建立起有机的联系,是最不容易忘记的,但现在的要求中,学生在这方面还是有所缺失的。最令担心的是班级中的差生的学习,无论如何要尽可能的使他们跟上班级体整体前进的步伐。在学习能力上,学生课外主动获取知识的能力有所进步,前一学期鼓动孩子们去买自己喜欢的参考书,通过自己的努力,一部分孩子的数学有了较为显著的提高,本学期也要继续鼓励有条件的孩子拓宽自己的知识视野,使孩子们在这个初中阶段这个最重要的一年里能更上一层楼。

三、教学目标

1、知识与技能目标

学生通过三角形、掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2、过程与方法目标

本学期针对不同的情况,根据学生的掌握的情况及教材的地位与作用采用比较灵活的教学方法,主要采用启发式教学,以激起学生的学习知识的积极性,培养学生的独立思考、自学能力为主,主要有:

1、学生猜想与学生动手操作相结合。

2、学生独立思考与教师指导相结合。

3、理论与实际相结合。

4、面向全体学生与照顾个别相结合。

5、组织练习与成绩考查相结合。

6、情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

四、教学措施

1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。

2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。

3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。

4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。

6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。

7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。

相关推荐

热门文档

20 2607181