首页 > 学习资料 > 教案大全 >

三角形的性质教案【推荐5篇】

网友发表时间 82837

发表时间

【序言】由阿拉题库最美丽的网友为您整理分享的“三角形的性质教案【推荐5篇】”教案资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

初中数学等腰三角形性质教学设计【第一篇】

一、教案背景

1、面向学生:初中 学科:数学

2、课时:1

3、学生课前准备:

(1)回忆等腰三角形的有关性质

(2)等腰三角形纸片

(3)完成课后习题

二、教学课题

课题:等腰三角形的性质与判定

(1) 课堂活动以学生为主体,教师为主导,重点放在如何调动学生的积极性,让学生观

察、分析、归纳概括,主动获得知识。

(2) 组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。

(3) 在教学中,向学生渗透数学思想方法,培养学生说理的能力。

三、教材分析:

1、 等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

2、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

3、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

4、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

5、 如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

6、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

7、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

8、 课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。

四、教学方法

本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的主体意识。

五、教学过程

教学目标:

1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。

2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。

3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。

教学重点:等腰三角形的性质与判定定理的证明

教学难点:证明过程的书写格式,用规范的符号语言描述证明过程

教学媒体:多媒体

六、教学过程:

(一)回顾知识

1、什么叫证明?什么叫定理?

2、证明与图形有关的命题,一般步骤有哪些?

3、我们初中数学中,选用了哪些真命题作为基本事实?此外,还有什么被看作是基本事实?

设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流

(二)创设情境

观察图片

百度图片搜索_等腰三角形金字塔的搜索结果

1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?

2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?

3、上述性质你是怎么得到的?(不妨动手操作做一做)

4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?

(三)探索活动

1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。

2、思考与讨论:说明你所画的是顶角的平分线。

怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

定理:等腰三角形的两个底角相等,(简称:“等边对等角”)

等边对等角_百度百科

设计说明:引导学生动手操作,让学生真正成为学习的主人,教师是数学学习的引导者,教师引导学生思考探究,逐步尝试运用说理的方式进行说明,教师引导学生,文字语言,

图形语言和几何语言间的互相转换。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C

定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) A

BD C4、你能写出上面定理的符号语言吗?

5、总结

三角形教案【第二篇】

教学目标

1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。

2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

教学重点:认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

教学难点:会在三角形内三条边上画高。

教学准备:师生分别准备木条(或硬纸条)钉成的三角形。

教学过程

第一课时

一、引入新课

1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。瞧,这是正在建设中的会展中心,你在图上发现三角形了吗?学生先说说哪里有三角形,再请学生在不同物体上描出两个三角形。

2.生活中哪些物体上也有三角形呢?让学生说一说。

房顶、红领巾、标志牌、画出的圣诞树的形状、自行车身上……

3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。

4.三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)

二、新课学习

1.发现三角形的特征。

请你画出一个自己喜爱的三角形。三角形有几个顶点、几条边、几个角?

让学生在自己画的三角形上尝试标出边、角、顶点。

教师根据学生的汇报板书,标出三角形各部分的名称。

2.概括三角形的定义。

大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?由三条线段围成的封闭图形叫三角形。请学生对照上面的说法,议一议:下面的图形是不是三角形?

讨论:对于“三角形”怎样说更准确?

阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?组织学生在讨论中理解“三条线段”“围成”。

教师用准备好的三条线段的教具在黑板上摆放帮助理解关键词:

三条线段、围、相邻两个端点相连。

学生发现:只有具备了这三个条件才能准确无误地围成三角形。

3.认识三角形的底和高。

出示练习纸:三角形屋顶的房子和斜拉桥。

你能测量出三角形房顶和斜拉桥的高度吗?

学生在练习纸上操作。反馈:你是怎么测量的?

将三角形房顶下面的边做底,房顶做顶点,过顶点作底边上的垂线就是房顶的高。

师带领学生一起回顾作高的方法,首先强调底和高的概念:

从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

明确:三角形有几个底,每个底边对应的顶点在哪里(学生依次指出来),从哪里向哪里作高,这条高是谁的高?

出示教材第81页上的三角形。这是三角形的一组底和高吗?画出其他的底和高,画后提问:三角形有共几条高?

出示直角三角形(一条直角边作底),你能画出这条底边上的高吗?

学生试画,画后发现高是另一条直角边。出示另两条底边,学生在答题纸上画出对应的高。

4.用字母表示三角形

全班这么多同学我们是用什么来区分,不会认错的?(名字)黑板上这么多的三角形怎样很快说出每个三角形呢?

我们一般用字母来表示。标注A、B、C在顶点,我们叫它三角形ABC。

如果标注D、E、F在顶点,就叫做三角形DEF。

5.三角形的稳定性

(1)提出问题。

出示教材第81页插图:生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?

(2)实验解疑。

学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?

实验结果:三角形具有稳定性。

请学生举出生活中应用三角形稳定性的例子。

三、巩固练习

指导学生完成练习十四1、2、3题。

四、课堂总结

这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?

第二课时

一、引入新课

1.出示:课本82页例3情境图。

三角形教案

(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?

(2)在这几条路线中哪条最近?为什么?(生:垂直线段距离最短)

教师出示不规则三角形路线图,现在还是垂直线段吗?为什么这一条路最近呢?

2.大家都认为走中间这条路最近,这是什么原因呢?

请大家看:连接小明家、商店、学校三地,近似一个什么图形?

连接小明家、邮局、学校三地,同样也近似一个什么图形?

大胆猜想:那走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?

操作交流:请学生任意画一个三角形,量一量三角形三条边的长,看是否任意两边的和大于第三边。

学生得出:的确有“两边的和大于第三边”这样的关系。

猜想还要用实验来验证,证明猜想对任意三角形都适合才能成立。我们来做个实验。

二、探究

1.实验l:用三根小棒摆一个三角形。

在每个小组的桌上都有5根小棒(2厘米、4厘米、5厘米、6厘米、10厘米),请大家随意拿三根来摆三角形,看看有什么发现?学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。

2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。

请不能摆成三角形的同学,说出不能摆成三角形的三根小棒的长度。

任意抽出三组,请学生试一下,看是否摆不成。

再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。学生汇报。

我们一起来研究一下,能摆成三角形的三条边的有什么关系,不能摆成三角形的三条边又有什么关系?

(1)每个小组用黑板上汇报的数据用小棒来摆三角形,并作好记录。

(2)观察上表结果,说一说能摆成三角形的三根小棒又有什么关系?不能摆成三角形的三根小棒关系有怎样的不同?为什么?

大家说的既形象又有道理,我们在判断三根小棒能否拼成三角形时,就看任意两边之和是否大于第三边,通过实验也进一步证实了只要是三角形,任意两边的和一定大于第三边。

(3)三角形任意两边的和大于第三边。

三、应用

1.通过实验,我们知道了三角形三条边的一个规律,我们就能用它来解释小明家到学校哪条路最近的原因了。(学生说说)

2.请学生独立完成82页例题中三道题,说说能否拼成三角形。

我们是否要把三条线段中的每两条线段都相加后才能作出判断?

思考一下:有没有更快捷的方法?

(用较小的两条线段的和与第三条线段的关系来检验。)

做练习十四第四题,利用快捷方式判断。你能用下图中的三条线段组成三角形吗?有什么办法?

3.有两根长度分别为2cm和5cm的木棒。

(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?

(2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?

(3)要能摆成三角形,第三边能用的木棒的长度范围是多少?

四、课堂总结

在这节课里,你有什么收获?学会了什么知识?是怎样学习的?

第三课时

一、引入新课

1.引导学生回顾锐角、直角和钝角的定义。

大于0小于90的角,叫做锐角;

等于90"的角,叫做直角;

大于90,小于180的角,叫做钝角。

2.让学生分别画出满足下列条件的三角形。

(1)画一个有一个角是锐角的三角形;

(2)画一个有二个角是锐角的三角形;

(3)画一个有三个角是锐角的三角形。

3.给学生足够的时间,教师可巡视班级,观察学生的学习情况。

4.一段时间后,让同桌的学生相互检查,验证所画的三角形是否满足要求。

5.肯定学生的积极表现,进一步指出:大家所画的三角形各不相同,由此我们可以知道三角形的种类很多,怎样对这些不同种类的三角形进行分类呢?本节课我们就来探讨这个问题。

二、新课学习

(一)从角的方面给三角形分类

1.多媒体展示三个图形,请学生观察。

2.提示学生先从角的方面人手,让学生观察上述三个三角形各内角,可以让学生先目测三角形内角大小,然后用量角器测量三角形内角大小。提问:这些角分别属于锐角、直角、钝角中的哪一类?

3.组织学生进行分组讨论。讨论的主题是:如何对三角形进行分类。教师可参与到学生的讨论中,及时了解学生的想法和状态,教师可作适当提示。

4.一段时间后,请各组派代表发言,介绍本组的讨论-情况。学生可能想到将三角形所含锐角个数分成三类,也可能想到将三角形分成锐角三角形,直角三角形,钝角三角形。

5.师生共同分析讨论,指出按三角形所含锐角的个数分类是不合理的,因为只含一个锐角的三角形是不存在的。

6.教师指出按照如下的分类是合理的,多媒体展示:

文本框:三个角都是锐角的三角形叫做锐角三角形;#13;#10;有一个角是直角的三角形叫做直角三角形;#13;#10;有一个角是钝角的三角形叫做钝角三角形。#13;#10;

7.指出已有图中,哪个是锐角三角形,哪个是直角三角形,哪个是钝角三角形。让学生任意画一个三角形,总可以将它归为上述三类三角形中的一类。因此,一个三角形要么是锐角三角形,要么是直角三角形,要么是钝角三角形。

多媒体展示下图:

(二)从边的方面给三角形分类

1.多媒体展示三个图形,请学生观察。

2.提示学生从边的方面考虑,可让学生自己或和同桌合作剪出如上的三角形纸片。

3.教师可巡视班级,监督学生的活动情况,随时给予学生指导。

4.请学生分别用直尺和量角器测出上述三个三角形的三条边的长度及各个角的度数。

5.学生发现其中一个三角形的三条边相等,三个角的度数都是60°。也有三角形有两条边相等,两个角相等;另一个三角形的三条边和三个角互不相等。

6.给出等腰三角形和等边三角形的定义。多媒体展示:

文本框:有两条边相等的三角形,叫做等腰三角形;#13;#10;三条边都相等的三角形,叫做等边三角形。#13;#10;

7.展示等腰三角形和等边三角形课件,讲解等腰三角形顶角、底角、腰和底的概念。

8.师生共同分析等腰三角形和等边三角形的性质。

性质l:等腰三角形的两腰相等,两底角相等。(板书)

性质2:等边三角形的三条边相等,三个角相等并且都是60°。(板书)

9.请学生列举生活中等边三角形和等腰三角形的例子,体会数学与现实的广泛联系。

三、课堂总结

引导学生回顾本节课的主要内容:三角形的分类。

从角的角度,三角形可以分为锐角三角形、直角三角形和钝角三角形;

从边的角度,三角形可以分为一般三角形、等腰三角形、等边三角形。

第四课时

一、引入新课

1.三角形按角的不同可以分成哪几类?

2.一个平角是多少度?1个平角等于几个直角?

3.如图,已知∠1=35°,∠2=75°,求∠3的'度数。

二、新课学习

1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4.指名学生汇报各组度量和计算的结果。你有什么发现?

5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)

10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)

11.老师板书结论:三角形的内角和是180°。

12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

13.出示教材85页做一做。让学生试做。

14.指名汇报怎样列式计算的。两种方法均可。

∠2=180°-140°-25°=15°

∠2=180°-(140°+25°)=15°

三、巩固练习

1.88页第9题

这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。

直角三角形中的一个锐角还可以怎样算?

2.88页第10题

①等腰三角形有什么特点?(两底角相等)

②列式计算180°-70°-70°=40°或

180°-(70°×2)=40°

2.88页第10题

①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?

②一个三角形的内角和是180°,两个三角形呢?

四、课堂总结

通过这节课的学习你有什么收获?

生活中的三角形物品

三角形教案三角形教案

三角形教案三角形教案

雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。

角形的性质教案【第三篇】

一、教学内容

《三角形的特性》是人教版小学数学四年级下册第五单元中第一课时的内容。

二、教学目标

1、知识目标:理解三角形的定义,知道三角形各部分的名称,理解三角形稳定性的特征,并学会给三角形画高。

2、能力目标:培养学生的观察分析和动手操作能力以及对数学知识应用的能力,进一步发展空间观念。

3、情感目标:体验数学与生活的联系,培养学生学习数学的兴趣。

三、教学重、难点

教学重点:理解三角形的定义,三角形稳定性的特征。

教学难点:掌握三角形高的画法。

四、教学过程

(一)导入。

1、课件出示一组情境图:同学们,我们以前学过三角形,仔细观察一下你能在图上找到三角形吗?

2、三角形在我们的生活中有着广泛的应用,这节课我们就来探究一下三角形的特性。(板书课题:三角形的'特性)

(二)操作感知,理解概念。

1、发现三角形的特征。

(1)师生每人画出一个三角形。

小组内展示画的三角形,你发现它们有什么共同点?

(2)让学生在自己画的三角形上尝试标出边、角、顶点。(指生上台板演。)

2、概括三角形的定义。

(1)学生动手摆三角形。思考:什么样的图形叫三角形?(可结合课本理解)

(2)学生回答。

(3)你认为定义中哪些词最重要?(理解“三条线段”“围成”。)

3、用字母表示三角形。

为了表达方便,我们通常把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。

4、认识三角形的底和高。

(1)复习过直线外一点做已知直线的垂线段。

(2)小组合作学习三角形高的画法。

自学提示:什么是三角形的高?

作三角形的高用什么学具?

怎样作三角形的高?

(3)小组代表展示问题并演示三角形高的作法。

(4)思考:三角形有几条高?应怎样画它们?

(三)实验解疑,探索特性。

1、提出问题。

(课件出示图)同学们,在生活中三角形有着广泛的应用,仔细观察为什么把物体的这些部分做成三角形的,它具有什么特性?为了解决这个问题我们来做个实验吧。

2、实验解疑。

下面,请大家都来做一个实验。

学生拿出三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?

实验结果:三角形具有稳定性。

请学生举出生活中应用三角形稳定性的例子。

(四)巩固运用,提高认识。

指导学生完成练习十五1、2、3题。

(五)课堂小结。

通过这节课的学习,你有什么收获?

五、板书设计

三角形的特性;

三角形有三个顶点,三个角,三条边;

由三条线段围成的图形叫做三角形;

三角形具有稳定性。

角形的性质教案【第四篇】

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点

等边三角形的判定定理和直角三角形的性质定理。

教学难点

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法

教学后记

教学内容及过程

教师活动学生活动

一、定理:一个角等于60°的等腰三角形是等边三角形

1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的'性质

1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4.让学生准备一张正方形纸片,,按要求动手折叠。

5.讲解例题,应用定理。

6.布置学生做练习。

练习:课本随堂练习1

三、课堂小结:

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:同步练习

板书设计:

1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

3.认真听讲,体会分类讨论的数学思维方法,理解定理。

1.积极动手操作,并很快得到结果:可以拼出等边三角形。

2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

4.很有兴趣地折叠纸片,体会定理的应用。

5.听讲,体会定理的应用。

6.认真做练习。

(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

三角形中线定理和性质【第五篇】

性质:

设⊿ABC的角A、B、C的对边分别为a、b、c。

1、三角形的三条中线都在三角形内。

2、三角形的三条中线长:ma=(1/2)√2b+2c-a。

mb=(1/2)√2c+2a-b;mc=(1/2)√2a+2b-c。

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的'中线等于斜边的一半。

5.三角形中线组成的三角形面积等于这个三角形面积的3/4。

相关推荐

热门文档