三角形的性质教案精编3篇
【路引】由阿拉题库网美丽的网友为您整理分享的“三角形的性质教案精编3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
《三角形的特性》教学设计1
吕金颖 河北名师魏晓辰工作室学员
教材分析
《三角形的特性》是人教课标版小学数学四年级第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的特性是学习平面图形知识的起点,也为学习平面几何、立体几何打下基础。本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,通过这一内容的教学进一步丰富学生对三角形的认识和理解。
学情分析
在此之前,学生已经直观的认识了三角形,并且认识了平行四边形、梯形的底和高,还有生活中积累的对三角形认识的丰富体验。因为平行四边形的高是从边上任意一点来画的,而三角形只能从顶点来画,所以正确画出已知底边上的高对学生来说难度较大,也是本节课的教学难点。还有学生对三角形稳定性的了解还停留在表面,还不能从数学的角度来理解。因此我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历"做数学"的过程,真正理解和掌握基本的数学知识和技能。
教学目标
1、通过动手操作和观察比较,理解三角形的意义,知道三角形高和底的含义,会画三角形的高。
2、通过实验,了解三角形的稳定性,体验数学在生活中的应用价值,培养学生的应用意识。
3、经历观察、比较、分析和操作的过程,体验数学与生活的联系,感受数学的美。
教学流程
一、理解三角形的意义和特征
1、联系生活,情景导入
师:今天老师给同学们带来一些漂亮的图片,想不想欣赏一下?
神秘的金字塔,古代人们智慧的结晶。你能找出图中的三角形吗?用手比划一下。
雄伟壮观的`斜拉桥,现代高科技的产物。你发现三角形了吗?在哪里?
精美的赛车上有吗?
师:从古至今,三角形广泛的应用于我们的生活之中,这是为什么呢?今天这节课我们就来进一步探索三角形的奥秘。
设计意图:由学生熟悉的生活导入,在情境中唤起学生已有的生活经验和知识储备,达到旧知迁移的目的。
2、认识意义和特征
(1)师:画一个自己喜欢的三角形。说一说:你是怎样画三角形的?
(2)根据大家画三角形的过程,你觉得什么样的图形叫做三角形呢?
在学生交流的基础上,教师引导学生总结出:由三条线段围成的图形叫三角形。
(3)重点引导学生用课件演示理解关键词"围成"。闭上眼睛想象围成的三角形的样子。
设计意图:让学生挑战画三角形、判断三角形使学生感觉到自己在玩中学,在学中玩,发挥学生的主体作用,学生经过独立思考、逐步探索和相互交流后,可以加深对三角形的认识,学生概括出自己对三角形的初步感知和认识,为总结抽象出三角形的意义做好铺垫。在汇报过程中让学生不同的说法互相碰撞,互相纠正,教师适时用反例纠正错误的说法。在碰撞的过程中逐步抽象出三角形的概念。真正实现让学生做学习的主人。
二、认识三角形的高
1、情景引入:利用山羊和长颈鹿的三角形的新家引出"高"的学习。
2、自学高的定义,尝试画高。
(学生自学三角形的高)
师:谁来说一说什么是三角形的高?你觉得在这句话中哪些词比较重要?
生:垂线,顶点,垂足,对边……
师:同学们请看第一幅,它为什么不是三角形的高呢?
生:斜了,高应该是垂直线段。
师:第二幅也是垂直线段呀,它怎么也不行呢?
生:没经过顶点!
师:课件演示
汇报交流环节重点引导学生关注高的画法和一个三角形可以画几条高的问题。
设计意图:出示三幅图,先让学生直观感受三角形的高,()然后自学,使学生对三角形的高有初步的理解。通过对后两幅图的解释,让学生加深对概念的理解。使学生在自主探索中经历知识的形成过程,实现对教学难点的突破。让学生在交流讨论中提升认识,构建对三角形底和高的理解。
三、了解三角形的稳定性
1、创设情境,比赛引入
师:现在我们放松一下,来场比赛怎么样?
请两位同学上台,一个拉三角形,一个拉平行四边形,拉变形的获胜。
生1:不公平!三角形很牢固,不易变形!
生2:三角形具有稳定性!
师:你的知识面可真宽,那你知道三角形为什么具有稳定性吗?
生:因为三角形很牢固,不易变形!所以具有稳定性。
师:这是你们的理解,三角形为什么具有稳定性,我们通过实验来说明问题。
设计意图:通过学生拉动不同形状的框架,亲自体验到平行四边形和三角形的不同特性,在操作和比较中加深了对三角形特性的认识。
2、深入研究,探索特性
请同学们同桌合作:用三根小棒摆三角形,用4根小棒摆四边形,看看你各能摆出几个?摆完后和小组同学交流一下,看看你有什么发现?
设计意图:让学生在"做"中学,不只是停留在教材描述的"拉不动"层面,让学生从数学的角度理解三角形的稳定性。既带给学生数学结论,也带给学生基本的学习方法,实现对教材的超越。
四、交流收获、全课总结
师:同学们,不知不觉中,就要下课了。请你谈一谈这节课的收获吧!
学生交流……
师:关于三角形的知识远不止这些,随着我们学习的不断深入,大家的收获会更多。
以上就是差异网为大家带来的3篇《三角形的性质教案》,希望对您的写作有所帮助。
角形的性质教案2
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:
①第四比例项
②比例中项
③比的前项、后项,比的内项、外项
④黄金分割等。
第二套:
注意:
①定理中对应二字的含义;
②平行相似(比例线段)平行。
二、相似三角形性质
1.对应线段
2.对应周长
3.对应面积。
三、相关作图
①作第四比例项;
②作比例中项。
四、证(解)题规律、辅助线
1.等积变比例,比例找相似。
2.找相似找不到,找中间比。方法:将等式左右两边的。比表示出来
3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将一份看着k;对于等比问题,常用处理办法是设公比为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)抽出来的办法处理。
五、 应用举例(略)
初中数学等腰三角形性质教学设计3
一、教案背景
1、面向学生:初中 学科:数学
2、课时:1
3、学生课前准备:
(1)回忆等腰三角形的有关性质
(2)等腰三角形纸片
(3)完成课后习题
二、教学课题
课题:等腰三角形的性质与判定
(1) 课堂活动以学生为主体,教师为主导,重点放在如何调动学生的积极性,让学生观
察、分析、归纳概括,主动获得知识。
(2) 组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。
(3) 在教学中,向学生渗透数学思想方法,培养学生说理的能力。
三、教材分析:
1、 等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
2、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
3、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
4、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
5、 如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
6、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
7、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
8、 课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。
四、教学方法
本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的主体意识。
五、教学过程
教学目标:
1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。
2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。
3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。
教学重点:等腰三角形的性质与判定定理的证明
教学难点:证明过程的书写格式,用规范的符号语言描述证明过程
教学媒体:多媒体
六、教学过程:
(一)回顾知识
1、什么叫证明?什么叫定理?
2、证明与图形有关的命题,一般步骤有哪些?
3、我们初中数学中,选用了哪些真命题作为基本事实?此外,还有什么被看作是基本事实?
设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流
(二)创设情境
观察图片
百度图片搜索_等腰三角形金字塔的搜索结果
1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?
2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?
3、上述性质你是怎么得到的?(不妨动手操作做一做)
4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?
(三)探索活动
1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。
2、思考与讨论:说明你所画的是顶角的平分线。
怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。
定理:等腰三角形的两个底角相等,(简称:“等边对等角”)
等边对等角_百度百科
设计说明:引导学生动手操作,让学生真正成为学习的主人,教师是数学学习的引导者,教师引导学生思考探究,逐步尝试运用说理的方式进行说明,教师引导学生,文字语言,
图形语言和几何语言间的互相转换。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C
定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) A
BD C4、你能写出上面定理的符号语言吗?
5、总结