七年级数学教案人教版的编写方法和技巧汇聚【汇编8篇】
七年级数学教案人教版的编写方法和技巧【第一篇】
几何图形大小:长度、面积、体积等。
位置:相交、垂直、平行等。
2几何体也简称体。包围着体的是面。
3常见的立体图形:柱体、椎体、球体等各部分不都在一个平面内。
4平面图形:在一个平面内的图形就是平面图形。
5展开图:识记一些常用的展开图。圆柱/圆锥的侧面展开图;。
6点线面体:是组成几何图形的基本元素。
7直线、射线、线段。
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
经过两点有一条直线,并且只有一条直线。两点确定一条直线。
8角。
9角的比较与运算。
角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角:如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。
补角:如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
性质:等角(同角)的补角相等。等角(同角)的余角相等。
七年级数学教案人教版的编写方法和技巧【第二篇】
一。教学目标:
1、认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点。
重点:二元一次方程组及其解的概念。
难点:用列表尝试的方法求出方程组的解。
三。教学过程。
(一)创设情景,引入课题。
1、本班共有40人,请问能确定男_几人吗?为什么?
(1)如果设本班男生x人,_人,用方程如何表示?(x+y=40)。
(2)这是什么方程?根据什么?
2、男生比_了2人。设男生x人,_人。方程如何表示?x,y的值是多少?
3、本班男生比_2人且男_40人。设该班男生x人,_人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]。
(二)探究新知,练习巩固。
1、二元一次方程组的概念。
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]。
(2)练习:判断下列是不是二元一次方程组:。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
学生作出判断并要说明理由。
2、二元一次方程组的解的概念。
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=+2a=2y。
(三)合作探索,尝试求解。
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业。
1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。
2、你还有什么问题或想法需要和大家交流?
3、作业本。
教学设计说明:
1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3、本课在设计时对教材也进行了适当改动。例题方面考虑到数_代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
七年级数学教案人教版的编写方法和技巧【第三篇】
一:教材分析:
1:教材所处的地位和作用:
以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:
(1)知识目标:
(a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(b)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳分享的“七年级数学教案人教版的编写方法和技巧汇聚【汇编8篇】”,以及理论联系实际的能力。
(3)思想目标:
通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:
根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)。
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。
5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。
三:教学策略:(说教法)。
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:“读(看)——议——讲”结合法。
2:图表分析法。
3:教学过程中坚持启发式教学的原则。
教学的理论依据是:
1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。
2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有_千克面粉”写成“设原来有_”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“_字串7”“—15%_”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。
3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。
4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。
5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。
四:教学程序:
(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。
(二):教学简要过程:
1:复习提问:
(1):什么叫做等式?
(2):等式与方程之间有哪些关系?
(3):求_的15%的代数式。
(4):叙述代数式与方程的区别。
(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)。
2:导入讲授新课:
(1):教具:
一块小黑板,抄212例1题目及相对应的空表格。
左边右边。
(2):新课引述:
(3):讲述课文212例1:
(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(a)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)。
指导学生设原来重量为_千克。这里分析等式左边:原来重量为_千克,运出重量为15%_千克,把以上填入表格左边。字串7分析等式右边:剩余重量为42500千克,填入表格右边。
(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)。
把以上左边和右边的代数式分别代入(a)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。
同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。
结合解题过程向学生介绍一元一次应用题解法的一般步骤:
课本215黑体字。
3:课堂练习:
课文216练习1,2题。
(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)。
4:新课巩固:
学生对本节内容进行要小结:
列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。
(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)。
5:作业布置:
课文221习题4-4(1)a组1,2,3题。
(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)。
五:板书设计:
4_4一元一次方程的应用:
例题:小黑板出示例1题目解:设原来有_千克面粉,那么运。
相等关系:原来重量—运出重量=剩余重量出了15%_千克,依题意,得。
等式左边:等式右边:_—15%_=42500。
原来重量为_千克,剩余重量为42500千克。解这个方程:
运出重量为15%_千克。85/100__=42500。
解一元一次方程的一般步骤:_=50000(千克)。
小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。
七年级数学教案人教版的编写方法和技巧【第四篇】
一、指导思想:
人教版七年级数学上册教学计划,本班学生刚刚完成小学六年的学习,升入初一,也就是我们现在所说的七年级。通过调阅小六毕业会考成绩册和试卷,发现本班学生的数学成绩不甚理想。从学生作答来看,基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。
二、情况分析:
学生情况分析:
全面贯彻党的十七大教育方针,以七年能数学教学大纲为标准,坚决完成《初中数学新课程标准》提出的各项基本教学目标。制定人教版七年级数学上册教学计划,根据学生的实际情况,从生活入手,结合教材内容,精心设计教学方案。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级上册数学教学任务。
三、教学目标。
人教版七年级数学上册教学计划知识与技能目标:认识有理数和代数式,掌握有理数的各种性质和运算法则,初步学会使用代数式探究数量之间的关系。认识基本几何图形,掌握基本基本作图能力和的技巧。过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。班级教学目标:优秀率:15%,合格率80%。
四、教材分析。
第一章、有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
第二章、整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
第三章、一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
第四章、图形认识初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。
五、教学措施。
1、人教版七年级数学上册教学计划,认真研读新课程标准,潜心钻研教材,根据新课程标准,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。
2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。
3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
七年级数学教案人教版的编写方法和技巧【第五篇】
一、选择题:(本题共24分,每小题3分)。
在下列各题的四个备选答案中,只有一个答案是正确的,请你把正确答案前的字母填写在相应的括号中.
1.若一个数的倒数是7,则这个数是().
a.-
2.如果两个等角互余,那么其中一个角的度数为().
°°°d.不确定。
3.如果去年某厂生产的一种产品的产量为100a件,今年比去年增产了20%,那么今年的产量为()件.
。
4.下列各式中结果为负数的是().
5.如图,已知点c是线段ab的中点,点d是cb的中点,那么下列结论中错误的是().
===2cdd.
6.下列变形中,根据等式的性质变形正确的是().
a.由,得x=2。
b.由,得x=4。
c.由,得x=3。
d.由,得。
7.如图,这是一个马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路ac、ab、ad中最短的是().
不确定。
8.如图,有一块表面刷了红漆的立方体,长为4厘米,宽为5厘米,高为3厘米,现在把它切分为边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.
。
二、填空题:(本题共12分,每空3分)。
9.人的大脑约有100000000000个神经元,用科学记数法表示为.
10.在钟表的表盘上四点整时,时针与分针之间的夹角约为度.
11.一个角的补角与这个角的余角的差等于度.
12.瑞士的教师巴尔末从测量光谱的数据,,,…中得到了巴尔末公式,请你按这种规律写出第七个数据,这个数据为.
三、解答题:(本题共30分,每小题5分)。
13.用计算器计算:(结果保留3个有效数字)。
14.化简:
15.解方程。
16.如示意图,工厂a与工厂b想在公路m旁修建一座共用的仓库o,并且要求o到a与o到b的距离之和最短,请你在m上确定仓库应修建的o点位置,同时说明你选择该点的理由.
拓展知识。
七年级数学教案人教版的编写方法和技巧【第六篇】
读数学教材或数学资料,不能流于形式草草看一遍完事,要看出问题和疑点。读数学教材或数学资料应做到:一粗读,先粗略浏览数学的有关内容,掌握知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、动笔推演体会、思考,经过自己的思考之后,再进行系统阅读,阅读中注意关注对知识由来的相关问题和过程,同时注意相关联的知识点,可以特殊化和一般化;对于例题和练习题,可以自己先尝试做,然后加以对比,对比中一定要理解不同点。读数学教材或数学资料要注意知识的形成过程,对难以理解的地方做出记号,以便带着疑问去听课或请教。
2.听课方法。
在听课上,要处理好“听”、“思”、“记”的关系。
“听”是直接用感官接受知识,在听的过程中注意:(1)听每节课的学习要求;(2)听知识引入及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基础关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。
“记”是指学生课堂笔记。七年级学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。要求记:(1)记笔记跟住听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。
掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。
3.完成作业的方法。
七年级学生完成数学作业前要先阅读教材,结合笔记记录的重点、难点,回顾相关知识要点和方法,同时思考公式、定理的推导过程。然后独立完成作业,解题后再反思是否还有其他解法。在书写格式上要规范、条理要清楚。为了作到这一点,我们应该注意训练自己的一些做作业的能力:将文字语言转化为符号语言的能力;将推理思考过程用文字书写表达的能力;正确地由条件画出图形的能力。
4.小结或总结方法。
在进行单元小结或单元总结时,七年级学生容易依赖老师,习惯教师带着复习总结。从七年级开始就该培养自己总结的方法。具体要做到:一看:看书、看笔记、看例题和常见错题,能否联系已学习的内容自己获得对重要结论的理解?通过看,回忆、熟悉理解所学数学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;看自己能否探究知识要点的由来?能否举出正例和反例?三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会归纳总结是数学学习的较高层次。
5、强化训练。
克服遗忘的最好方法是强化练习和不断总结。把练习做题放在学习的第一位,做题练习比听课更重要,限时定量的练习不仅能提高解题速度,也能提高解题的准确性,更能激发起学好数学的自信心。总结就是反思,要建立一个数学笔记本积累经典数学问题,总结优秀方法和常见数学错误,相信你的数会越学越扎实。常见数学错题是一个探雷器,通过归类分析可以检查出自己知识结构体系中存在的漏洞,分析出自己学习中的盲点(如不懂的地方、易错的地方、常错的地方),总结出各种题型的解题思路。让自己对学习中存在的问题做到心中有数,使自己的学习目标和方向更加明确,在常见数学错题中标出“概念错误”“思路错误”“理解错误”“审题错误”等错误原因,就可以用最短的有限时间去扫清尽可能多的盲点,真正做到减少重复的错误,提高学习数学的有效性。数学学习的过程就是一个不断改正错误、解决问题积累的过程,就是一个积累知识、积累方法和自信的过程。
关于数学学习,学习方法上要将学数学,变成玩数学,用数学,也就是要结合生活实际,千万不能够学得过于死板了,学习数学终极不是为了解数学题,而是解决实际问题。同学们,在数学学习上,你们一定要充满自信!
七年级数学教案人教版的编写方法和技巧【第七篇】
(4)设n是一个数,则它的相反数是________.
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
2.请学生说出所列代数式的意义。
(设计意图:让学生会用单项式表示现实生活中的数量关系,进一步感悟用字母表示数的简洁、方便,使用的广泛性。)。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答)。
(设计意图:教师提出问题,激发学生学习的欲望、学习的积极性、主动性,以此为载体感悟单项式的特征,为归纳单项式概念作好准备)。
二、新授内容。
1、单项式。
通过上述特征的描述,从而概括单项式的概念,:
单项式:即由_____与______的乘积组成的代数式称为单项式。
补充:单独_________或___________也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。
解:是单项式的有(填序号):________________________。
七年级数学教案人教版的编写方法和技巧【第八篇】
2.会用上的点表示有理数,会利用比较有理数的大小;。
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议。
一、重点、难点分析。
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.
二、知识结构。
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义。
三要素。
应用。
数形结合。
规定了原点、正方向、单位长度的直线叫。
原点。
正方向。
单位长度。
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数。
比较有理数大小,上右边的数总比左边的数要大。
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点。
1.的概念。
(1)规定了原点、正方向和单位长度的直线叫做.
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.
以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.
2.的画法。
(1)画直线(一般画成水平的)、定原点,标出原点“o”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小。
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。
五、定义的理解。
1.规定了原点、正方向和单位长度的直线叫做,如图1所示.
2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).
a点表示-4;b点表示-;。
o点表示0;c点表示;。
d点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数.
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。
同理,,表示是负数;反之是负数也可以表示为。
3.正常见几种错误。
1)没有方向。
2)没有原点。
3)单位长度不统一。