首页 > 学习资料 > 教案大全 >

比例的意义 实用比例的意义教案一等奖 青岛版比例的意义教案【优秀5篇】

网友发表时间 2981495

【导言】此例“比例的意义 实用比例的意义教案一等奖 青岛版比例的意义教案【优秀5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

《比例的意义》教案【第一篇】

教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

教学重点难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

教具学具准备:

幻灯片、学习卡。

教学过程:

一、创设情景,引入新课。

出示三幅场景图。

(1)图上描述的是什么情景?这几幅图都与什么有关?

(2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)

(3)你们有见过这样的国旗吗?或者这样的?

我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

二、自主探究,明确意义

1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?

2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

3、学生汇报。

4、我们以操场上和教室里的国旗为例,:= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成:=60:40,因为比还可以写成分数形式,所以还可以写成=。

像这样表示两个比相等的式子叫做比例。(板书)

5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?

6、深入探讨:

(1)比例有几个比组成?

(2)是不是任意两个比都能组成比例?

(3)判断两个比能不能组成比例,关键要看什么?

7、完成“做一做”。

三、探究比例的基本性质。

1、学习比例各部分的名称。

教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

(1)指名读一读有关知识。

(2)谁来介绍一下在:=60:40中,内项和外项分别是谁?

随着学生的回答教师出示:

: = 60: 40 (外项)(内项)

└-内项-┘ =

└------外项-------┘ (内项)(外项)

(3)如果把比例写成分数形式,你能找出它的内项和外项吗?

(4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

2、研究比例的基本性质。

(1)活动探究,总结性质。

谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

:=60:40 =

②你能举一个例子,验证你的发现吗?

③你能得出什么结论?

④你能用字母表示这个性质吗?

(2)运用性质。

①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1) 6:3和8:5 (2) : 和 4:50

(3) :和 : (4) : 和 :5

四、巩固练习。

1、填空

(1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

(2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

(3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。

(4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

(5)如果5a=3b,那么, = , = 。

2、判断。

(1)在比例中,两个外项的积减去两个内项的积,差是0。( )

(2)18:30和3:5可以组成比例。( )

(3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

(4)因为3×10=5×6,所以3:5=10:6。( )

3、把下面的等式改写成比例:(能写几个写几个)

16 × 3 = 4 × 12

四、总结归纳

1、这节课我们学习了什么知识?你有什么收获?

2、判断两个比能不能组成比例,有几种方法?

比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

板书设计

比例的意义和基本性质

表示两个比相等的式子叫做比例。

: = 60: 40 (外项)(内项)

└-内项-┘ 或 =

└------外项-------┘ (外项)(内项)

在比例里,两个外项的积等于两个内项的积。

A:B=C → AD=BC

《比例的意义》教案15

教学内容:教科书第19—21页正比例的意义,练习六的1—3题。

教学目的:

1.使学生理解正比例的意义,能够根据正比例的意义判断两种量是不是成正比例。

2.初步培养学生用事物相互联系和发展变化的观点来分析问题。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程():

一、复习

用,投影片逐一出示下面的题目,让学生回答。

1.已知路程和时间,怎样求速度?板书: =速度

2.已知总价和数量,怎样求单价?板书: =单价

3.己知工作总量和工作时间,怎样求工作效率?板书:

=工作效率

4,已知总产量和公顷数,怎样求公顷产量?板书: =公顷产量

二、导人新课

教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

三、新课

1.教学例1。

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表:

提问:

“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米……)

“表中有哪几种量?”

“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?……”

“这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍……从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍……时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60, =60…… 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。

然后教师指着 =60, =60 = 60……问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)

教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)

2.教学例2。

出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

让学生观察上表,并回答下面的问题:

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

当学生回答完第二个问题后,教师板书: =, =, =3.1……

然后进一步问:

“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

3.抽象概括正比例的意义。

教师:请同学们比较一下刚才这两个例题,回答下面的问题;

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的`?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定。像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系。(板书出教科书上第’20页的倒数第二段。)

接着指着例1的表格说明:在例1中,路程随着时间的变化而变化,它们的比值(速度)保持一定,所以路程和时间是成正比例的量。随后让学生想一想:在例2中,有哪两种相关联的量:它们是不是成正比例的量?为什么?

最后教师提出:如果我们用字母X,y表示两种相关联的量.用字母K表示它们的比值,你能将正比例关系用字母表示出来吗?

学生回答后,教师板书: =K(一定)

4,教学例3。

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

“面粉的总重量和袋数是不是相关联的量?”·

“面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否—定?”(板书: =每袋面粉的重量(一定))

“已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例。”

5.巩固练习。

让学生试做第21页“做一做”中的题目。其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以。

四、课堂练习

完成练习六的第1—3题。

第1题,做题前,让学生想一想:成正比例的量要满足哪几个条件?然后让学生算出各表中两种相对应的数的比的比值,看看它们的比值是否相等。如果比值相等就可以列出关系式进行判断。第(3)小题,要问一问学生为什么正方形的边长和面积不成比例。(因为相对应的正方形的边长和面积的比的比值不相等。)

第2题,先让学生自己判断,再订正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

第3题,可先让同桌的同学互相举例,然后再指名举出成正比例的例子。

比例的意义【第二篇】

比例的意义

教学内容:比例的意义

教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

教学重点:比例的意义。

教学难点:找出相等的比组成比例。

教学过程:

一、旧知铺垫

什么是比?什么叫比值?怎样求比值?

2.求下面各比的比值。

12:16

3/4:1/8

二、探索新知

1.教学例1。

(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

①说一说各幅图的情景。

②图中有什么相同之处?

(2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?

(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

学生回答教师板书:

60:40=3/2

操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

学生回答长、宽比值。

:=3/2

两面国旗的长和宽的比值相等。

板书::=60:40

也可以写成:/=60/40

(4)找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?

如:5:10/3=15:10

5:10/3=:

15?10=/

15/10=60/40

(5)什么是比例?

表示两个比相等的式子叫做比例。

(6)1:2是是比例吗?你能把它组成一个比例吗?

(7)完成教材“做一做”。

第1题。

什么样的比可以组成比例?

把组成的比例写出来。

说一说你是怎么找的。

同学之间互相交流,检验各自所写的比例。

第2题。

学生独立写比例,看谁写得多。

同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

3.课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

三、巩固练习

完成课文练习六第1~3题。

第一课时教学反思

复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。

在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式。在此基础上再提问“怎样的式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)

做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4 = ∶3、4∶2 = 3∶、2∶ = 4∶3、∶2 = 3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例:3=2:4、3:=4:2、4:3=2:、 3:4=:2。为什么仅仅相换了等号两边的比,就应该算作不同的比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。

练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。

练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。

《比例的意义》教案【第三篇】

课标与教材分析:

本课是青岛版教材40—41页《比的意义》。是“比和比例”单元的起始课。教材在安排此内容时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。《数学课程准标》指出:“数学教学必须从学生熟悉的生活情景和感兴趣的事物出发”。教材是从日常生活中的相除关系的例子中引出的,通过对具体例子的讨论,明确了比的概念。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关联的两个数量的比都可以抽象为两个数的比,比分为同类量的比和不同类量的比。

教材在介绍比的各部分名称时提出了比值的意义,比值的意义和比与分数、除法的关系是本节课的教学要点,理解它们之间的关系,对今后学习比的其它知识和比例的知识具有重要意义。

比的意义是由除法发展而来的,与除法,分数既有联系又有区别。所以制定了以下教学目标:

知识目标:

1、理解比的意义,学会比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,会正确求比值。

3、弄清比同除法、分数的关系,同时领悟事物之间相互联系的观点。

技能目标:

1、能正确的求出比值。

2、通过小组合作学习,激发合作意识,培养学生分析、概括和自主学习的能力。并能运用新知识解决生活中的实际问题。

情感态度目标:

1、通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辩证唯物主义观点。

2、养成课前预习、课后复习、独立思考和大胆质疑的良好习惯。

教学重难点:

理解比的意义及比与除法、分数的联系。

主要学习方法及教学策略分析: 本节课用创设情境法,从学生身边熟悉身体结构提取教学素材,激发学生对新课的学习兴趣。用身体中的头部长和身长两个数量比较成为教学的起点,逐步引出比的意义。比的各部分名称的教学,采用让学生自主学习的方法;比与除法、分数的联系,采用学生小组合作探究学习的方法。

设计理念:

新课程倡导教师在课堂教学中起主导作用,学生才是学习的主体,教师要最大限度地引导学生参与教学的全过程。自学是学生参与学习的一种有效方法,《比的意义》一课概念不仅多而且也琐碎,为了使学生更好的掌握本课内容,突破重难点,我主要采用学生自主学习和合作交流的方式进行,教师做好引导者和参与者的角色,让学生在自学中体会、练习中感悟、讨论中明理,在学习过程中,学生的合作意识、分析概括能力和自主学习的能力得到了培养和提高。

教学过程:

一、复习铺垫。(多媒体出示)

1、填空。 速度=( )÷( ) 单价=( )÷( ) 工作效率=( )÷( )

2、除法与分数的关系

二、情境导入。(出示第一张幻灯片)

1、创设情境 初步感知

师:课前老师让大家测量了自己的身体各部分的长度,谁来说一说? 师:老师也查阅了赵凡的一些资料,我们来了解一下,好吗?

多媒体出示课件(课本主题图片)

同学们,你从图中知道了哪些信息?

根据这些信息你能用算式表示赵凡同学的头部与身长的关系吗?

生:20÷160、表示头部长是身长的几分之几?

生:160-20表示身长比头部长多少厘米?

生:160÷20 表示身长是头部长的多少倍?

师:除了用算式表示头部长和身长的倍数关系和相差关系,还有一种方式也可以表示出头部长与身长的关系,今天我们就来认识这种表示数量之间关系的新方法——比(板书:认识比)

2、借助教材,感知概念

师:求赵凡头部长是身长的几分之几用25÷160 还可以说赵凡头部长与身长的比是25:60 身长时头部长的几倍还可以说身长与头部长之比师160:25 师:同学们25:160和160:25这两个比一样吗?

生:不一样,25:160是头部长与身体的比 160:25 是身长与头部长的比

师:两个数量进行比较一定要弄清谁和谁比,谁在前,谁在后。不能颠倒位置,否则,比表示的意义就变了。

师:你能不能试用比说说赵凡身体其他两者之间的关系?

指名发言

师:刚才我们所说的比都是两个长度的比,相比的两个量都是同类的量,你还能举出生活中这样的例子吗?

练习这样的例子

3、探究不同类量的比

多媒体出示:赵凡3分钟走了330米,赵凡的行走速度是多少?

问:速度可以怎样求?330÷3= 师:这时候我们可以用比来表示路程与时间的关系,可以说路程和时间的比是330:3 师:除了相同的量可以可以用比,不同类的量只要有相除关系就可以用比表示

所以我们把两个数相除也叫做两个数的比。

练习:用比表示练习

4、自主学习 交流成果

同学们打开可本自学比的其他知识,交流学习成果。

小练习

5、探究比、除法、分数的关系

1、讨论交流他们之间的关系

2、0可以是比的后项吗?

3、比赛中的0 和比有关系吗?

①比的前项、后项和比值分别相当于分数和除法算式中的什么?

三、思维拓展,感知数学无处不在。

1、生活中的比,人体中有趣的比。

人的身高与双臂平伸长度的比大约是1:1;将拳头翻滚一周,它的长度与脚的长度的比大约是1:1;人的脚长与身高的比大约是1:7;身高与胸围长度的比大约是2:1;人的体重与血液重量之比大约为13∶1。

先自读,后同桌互读,理解内在含义。

五、课堂总结。

请同学们闭上眼睛,想想着节课有什么收获?把你的收获说给你的同桌听,如果还有什么疑问,告诉老师,我们一起来解决。

板书设计: 比的意义

同类量的比:不同类量的比:

头部与身长的比25 :160 路程与时间的比 330:3 两个数相除就叫做两个数的比 100 : 2 =100 ÷ 2=50 前项 比号 后项 前项 除以 后项 比值

《比例的意义》教案【第四篇】

教学内容:教材第42~44页例4~例6,“练一练”,练习八第4—7题。

教学要求:

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点:认识反比例关系的意义。

教学难点:掌握成反比例量的变化规律及其特征。

教学过程:

一、复习旧知

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

指名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括反比例的意义。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?板书:x×y=k(一定)指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

5.教学例6。

出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?板书;每本的页数×本数=纸的总页数(一定)请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

三、巩固练习

用刚才我们说的判断方法来做几道题。

1.做“练一练”第l题。

指名学生口答,说明理由。(可以写出数量关系式看一看)

2.做“练一练”第2题。

指名口答,说说理由。思考时可以引导看数量关系式。

3.做练习八第5题。

让学生先在书上判断。指名口答,要求说出数量关系式判断。

4.下题两种相关联量成不成反比例?为什么?

一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

5.做练习八第6题。

各人先在书上写各成什么比例。指名口答,要求说明理由。

6.做练习八第7题。

先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

练习八第7题。

比例的意义和基本性质及教学教案【第五篇】

教材分析:

《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材利用三角形的缩小做素材,引导学生根据图中的数据写出不同的比例,以其中一个比例为例教学比例各项的名称,在让学生说出其他几个比例的内项和外项。在观察各个比例中的内项和外项的基础上,发展规律,揭示比例的基本性质。教材还介绍了分数形式的比例基本性质的表达方法。“试一试”教学利用比例的基本性质判断两个比能否组成比例的方法。“练一练”和练习十第1-4题对所学知识进行巩固。

设计思路:

传统的课堂教学,学生面对的都是些经过人类长期积淀和锤炼的间接经验。由于教学大纲规定,许许多多的知识点,使得教师只能用简单的“传授——接受”的教学方式来进行。而学生只是记忆、再现这些知识点,沦为考试的奴隶。其实知识是死的,课堂教学绝不仅仅让学生拥有知识,更应该让学生拥有智慧,拥有获取知识的方法。

从教育心理学角度看,学生智慧的发展,离不开智慧的熏陶。智:是人类个体的认识过程或认知结构,即对外部信息的感知、整理、联想、储存很搜索、提取、操作,或通过此过程形成的认知水平。慧:是人类个体所认知事理的评判过程和评判标准。我校通过创设智慧课堂,使教学触及学生的世界,伴随他们的认知活动,做到了“以智促知”。

基于以上认识,我教学时注意了以下几点:

1、注重从学生已有的知识出发,主动建构知识。在教学“比例的基本性质”时,让学生自己选择例子来探索,在探索中发现规律,得到结论。让学生处于积极探索的状态,唤醒了学生学习中一些零散的体验,并在教师的引导下主动将这些体验“数学化”,提炼出数学知识。

在教学中,不仅要求学生掌握抽象的数学结论,更应注重学生的“发现”意识,引导学生参与探讨知识的形成过程,尽量挖掘学生的潜能,能让学生通过努力,自己解决问题。这一教学过程,让学生通过计算、观察、发现、自学的方式,使学生在自己探索中学习知识,发现知识,并通过讨论,说出判断两个比能否组成比例的依据,促进了学生学习的顺利进行。

2、用教材教,体现教学的民主性。因为学生对比的知识了解甚多,所以在研究“比例的基本性质”的时候,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳法研究的过程,并渗透科学态度的教育。

整个教学过程力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。如要求学生用自己的语言归纳比例的基本性质,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。

3、在运用比例的基本性质进行判断时,要求学生讲明理由,培养学生有根据思考问题的良好习惯;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯。

4、给予学生自主探究的时间、自由驰骋的思考空间,允许他们有不同的想法、不同的方法,在开放式、个性化的学习中生成灵感,碰撞智慧。正是学生用自己独特的学习方式来解决问题,课才变得生动和真实,学习才显得如此活泼和有效。数学的学习成了充满灵性的创造过程,成了放飞心灵的快乐之旅。课堂已不仅是学科知识传递的殿堂,更是智慧培育的圣殿。

叶澜教授曾说:“把课堂还给学生,让课堂焕发生命活力”,确实我们教师应该把课堂看作是学生演绎精彩生命的舞台,把主动权、选择权下放给学生,让学生去思考、去探索、去实践,才能激起学生的求知欲望,才会有层出不穷的生成,使课堂充满生命的活力。

教学反思

“比例的意义和基本性质”这节课是概念教学,不太好讲。在上课之前我感觉自己做了充分的准备。从学生已有的知识经验入手,方便快捷,为新课做好准备。激发学生的学习兴趣和求知欲望,使学生在探索中学习。然后在教学比例的基本性质时,我让学生看书自学,再小组交流,这样符合“新课标”的要求,体现了教师的主导作用和学生的主体地位。本节课的学习方式是多样的,有观察比较、小组交流、师生交流、同位交流、多方验证。另外,为了培养学生的能力,我采用了自主观察与讨论相结合的教学方式,而且整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完课之后,我发现还存在很多问题。

1、教师激励性的语言还欠缺,还不能用多种语言来激励学生。如果感情更深些,更能激起学生的学习兴趣,使他们能更好的参参与学习。

2、上课心态、情绪还不够平稳,计算机技能、教学机智、自身素养还有待提高。为促进教学目标的顺利完成最后有点赶时间。

3、面对一些即时生成的课程资源,我还不能及时抓彩,把这些有效的教学资源开发、放大,让它临场闪光,从而激发学生参与课堂的热情,让“死”的知识活起来,让“静”的课堂动起来,变单纯的“传递”与“接受”为积极主动的“发展”与“建构” 。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。作为一名教师,在今后的日子里,还要好好努力,在实践中不断完善自己的教学方法。

相关推荐

热门文档

20 2981495