首页 > 学习资料 > 教案大全 >

最新高一数学教案 高一数学教案必修一优推4篇

网友发表时间 3563920

设计高一数学教案,涵盖基础知识与技能,注重学生思维能力培养,通过实例与练习增强理解,促进课堂互动与合作学习,提升数学素养。下面是阿拉网友收集整理的最新高一数学教案 高一数学教案必修一优推4篇优秀范例,欢迎阅读参考,喜欢就支持吧!

高一数学教案 高一数学教案必修1【第一篇】

教学目标:①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴ , (a>0,a≠1)

⑵ ,logл ,lnл

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0

调递减,所以> ;当a>1时,函数y=logax单调递

增,所以

板书:

解:ⅰ)当0

∵< ∴>

ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵< ∴

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, >0,lnл>0,logл<0;lnл>1,

<1,所以logл< < lnл。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式(x2+2x-3)>(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式≥0,且真数x>0。

板书:

解:∵ 2x-1≠0 x≠

≥0 , x≤

x>0 x>0

∴x(0,)∪(,〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解: x2+2x-3>0 x<-3 或 x>1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2

不等式的解为:1

例 3 求下列函数的值域和单调区间。

⑴y=(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= , u= x- x2复合而成。

板书:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-()2+, ∴0

∴y= ≥=2

∴y≥2

x x(0,] x[,1)

u= x- x2

y=

y=(x- x2)

函数y=(x- x2)的单调递减区间(0,],单调递 增区间[,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则

函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什

么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能

通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的

单调性。

5、课堂教学设计说明

这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 。比较数的大小,想通过这一部分的练习,

培养同学们构造函数的思想和分类讨论、数形结合的思想。二。函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。

高一数学教案 高一数学教案必修1【第二篇】

数学教案-圆柱和圆锥

圆柱和圆锥

单元教学要求:

1、 使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。

2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。

3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

单元教学重点:圆柱体积计算公式的推导和应用。

单元教学难点 :灵活运用知识,解决实际问题。

(一)圆柱的认识

教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。

教学要求:

1、使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。

2、使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。

教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。

教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。

教学难点 :认识圆柱的侧面。

教学过程 :

一、复习旧知

1、提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?

2、引入新课。

出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)

二、教学新课

1、认识圆柱的特征。

请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。提问:谁来说一说圆柱有哪些特征?

2、认识圆柱各部分名称。

(1)认识底面。

出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)

(2)认识侧面。

请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)

(3)认识圆柱图形。

请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。

说明:圆柱是由两个底面和侧面围成的。底面是完全相同的两个圆,侧面是一个曲面。

在说明的基础上画出下面的立体图形:

(4)认识高。

长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的。高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)

3、巩固特征的认识。

(1)提问:你见过哪些物体是圆柱形的?

(2)做练习一第1题。

指名学生口答,不是圆柱的要求说明理由。

(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……

4、教学侧面积计算。

(1)认识侧面的形状。

教师出示圆柱模型说明:请同学们先想一想,如果把圆柱侧面沿高剪开再展开,它会是什么形状。现在请大家拿出贴有商标纸的饮料罐(教师同时出示),沿着它的一条高剪开,(教师示范)然后展开,看看是什么形状。学生操作后提问:你发现圆柱体的侧面是什么形状?

(2)侧面积计算方法。

①提问:得到的长方形的长和宽跟圆柱体有什么关系呢?请同学们看从第3页最后两行到4页的“想一想”,并在横线上填空。提问“想一想”所填的结果。

②得出计算方法。

提问:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么?(板书:圆柱的侧面积=底面周长×高)

(3)教学例1

出示例1,学生读题。指名板演,其余学生做在练习本上。集体订正。

三、巩固练习

1、提问:这节课学习了什么内容?

2、做圆柱体。

让学生按剪下的第127页的图纸做一个圆柱体。指名学生看着做的圆柱体说一说圆柱的特征,边说边指出圆柱的各个部分。让学生说一说圆柱的侧面积怎样计算。

3、做“练一练”第3题。

指名两人板演,让学生在练习本上列出算式。集体订正,要求说一说每一步求的是什么。

4、思考:

如果圆柱的底面周长和高相等,侧面展开是什么形状,

四、布置作业

课堂作业 :练习一第2题。

高一数学教案 高一数学教案必修1【第三篇】

摘要鉴于大家对数学网十分关注,网友在此为大家整理了(*),供大家参考!

:空间几何体的三视图和直观图高一数学教案

中心投影与平行投影 空间几何体的三视图

:能画出简单几何体的三视图;能识别三视图所表示的空间几何体。

:画出三视图、识别三视图。

:识别三视图所表示的空间几何体。

1、 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

2、 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上。

三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

直观图:观察者站在某一点观察几何体,画出的空间几何体的图形。

用途:工程建设、机械制造、日常生活。

1、 教学中心投影与平行投影:

① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形。

③ 平行投影:在一束平行光线照射下形成的投影。 分正投影、斜投影。

讨论:点、线、三角形在平行投影后的结果。

2、 教学柱、锥、台、球的三视图:

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图

讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高

结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果。 正视图、侧视图、俯视图。

③ 试画出:棱柱、棱锥、棱台、圆台的三视图。 (

④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状。

(试变化以上的三视图,说出相应几何体的摆放)

3、 教学简单组合体的三视图:

① 画出教材p16 图(2)、(3)、(4)的三视图。

② 从教材p16思考中三视图,说出几何体。

4、 练习:

① 画出正四棱锥的三视图。

画出右图所示几何体的三视图。

③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状。

5、 小结:投影法;三视图;顺与逆

练习:教材p17 1、2、3、4

第二课时 空间几何体的直观图

教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图。

教学重点:画出直观图。

高一数学教案 高一数学教案必修1【第四篇】

一。 教学内容:平面向量与解析几何的综合

二。 教学重、难点:

1、 重点:

平面向量的基本,圆锥曲线的基本。

2、 难点:

平面向量与解析几何的内在联系和知识综合,向量作为解决问题的一种工具的应用意识。

典型例题

[例1] 如图,已知梯形abcd中, ,点e分有向线段 所成的比为 ,双曲线过c、d、e三点,且以a、b为焦点,求双曲线的离心率。

解:如图,以ab的垂直平分线为 轴,直线ab为 轴,建立直角坐标系 轴,因为双曲线经过点c、d且以ab为焦点,由对称性知c、d关于 轴对称

设a( )b( 为梯形的高

设双曲线为 则

由(1): (3)

将(3)代入(2):∴ ∴

[例2] 如图,已知梯形abcd中, ,点e满足 时,求离心率 的取值范围。

解:以ab的垂直平分线为 轴,直线ab为 轴,建立直角坐标系 轴。

因为双曲线经过点c、d,且以a、b为焦点,由双曲线的对称性,知c、d关于 轴对称 高中生物。

依题意,记a( )、e( 是梯形的高。

设双曲线的方程为 ,则离心率由点c、e在双曲线上,将点c、e的坐标和由(1)式,得 (3)

将(3)式代入(2)式,整理,得故 ,得解得所以,双曲线的离心率的取值范围为

[例3] 在以o为原点的直角坐标系中,点a( )为 的直角顶点,已知 ,且点b的纵坐标大于零,(1)求 关于直线ob对称的圆的方程。(3)是否存在实数 ,使抛物线 的取值范围。

解:

(1)设 ,则由 ,即 ,得 或

因为

所以 ,故

(2)由 ,得b(10,5),于是直线ob方程:由条件可知圆的标准方程为:得圆心(

设圆心( )则 得 ,

故所求圆的方程为(3)设p( )为抛物线上关于直线ob对称的两点,则

即 、于是由故当 时,抛物线(3)二:设p( ),pq的中点m(∴ (1)-(2): 代入∴ 直线pq的方程为

∴ ∴

[例4] 已知常数 , 经过原点o以 为方向向量的直线与经过定点a( 方向向量的直线相交于点p,其中 ,试问:是否存在两个定点e、f使 为定值,若存在,求出e、f的坐标,不存在,说明理由。(20xx天津)

解:根据题设条件,首先求出点p坐标满足的方程,据此再判断是否存在两定点,使得点p到两定点距离的和为定值。

∵ ∴

因此,直线op和ab的方程分别为 和消去参数 ,得点p( ,整理,得

① 因为(1)当(2)当 时,方程①表示椭圆,焦点e 和f 为合乎题意的两个定点;

(3)当 时,方程①也表示椭圆,焦点e 和f( )为合乎题意的两个定点。

[例5] 给定抛物线c: 夹角的大小,(2)设 求 在 轴上截距的变化范围

解:

(1)c的焦点f(1,0),直线 的斜率为1,所以 的方程为 代入方程 )、b(则有

所以 与

(2)设a( )由题设

即 ,由(2)得 ,

依题意有 )或b(又f(1,0),得直线 方程为

当 或由 ,可知∴

直线 在 轴上截距的变化范围为

[例6] 抛物线c的方程为 )( 的两条直线分别交抛物线c于a( )两点(p、a、b三点互不相同)且满足 ((1)求抛物线c的焦点坐标和准线方程

(2)设直线ab上一点m,满足 ,证明线段pm的中点在 轴上

(3)当 ),求解:(1)由抛物线c的方程 ),准线方程为

(2)证明:设直线pa的方程为

点p( )的坐标是方程组 的解

将(2)式代入(1)式得

于是 ,故 (3)

又点p( )的坐标是方程组 的解

将(5)式代入(4)式得 ,故

由已知得, ,则设点m的坐标为( ),由 。则

将(3)式和(6)式代入上式得

即(3)解:因为点p( ,抛物线方程为由(3)式知 ,代入

将 得因此,直线pa、pb分别与抛物线c的交点a、b的坐标为

于是, ,

因即 或

又点a的纵坐标 满足当 ;当 时,所以,

[例7] 已知椭圆 和点m( 的取值范围;如要你认为不能,请加以证明。

解: 不可能为钝角,证明如下:如图所示,设a( ),直线 的方程为

由 得 ,又 , ,若 为钝角,则

即 ,即

即∴

模拟(答题时间:60分钟)

1、 已知椭圆 ,定点a(0,3),过点a的直线自上而下依次交椭圆于m、n两个不同点,且 ,求实数 的取值范围。

2、 设抛物线 轴,证明:直线ac经过原点。

3、 如图,设点a、b为抛物线 ,求点m的轨迹方程,并说明它表示什么曲线。

4、 平面直角坐标系中,o为坐标原点,已知两点a(3,1),b( )若c满足 ,其中 ,求点c的轨迹方程。

5、 椭圆的中心是原点o,它的短轴长为 ,相应于焦点f( )的准线 与 轴相交于点a, ,过点a的直线与椭圆相交于p、q两点。

(1)求椭圆的方程;

(2)设 ,过点p且平行于准线 的直线与椭圆相交于另一点m,证明 ;

(3)若 ,求直线pq的方程。

试题答案

1、 解:因为 ,且a、m、n三点共线,所以 ,且 ,得n点坐标为

因为n点在椭圆上,所以即所以

解得2. 证明:设a( )、b( )( ),则c点坐标为( 、

因为a、f、b三点共线,所以 ,即

化简得

由 ,得

所以

即a、o、c三点共线,直线ac经过原点

3、 解:设 、 、则 、

∵ ∴

即又

即 (2) ∵ a、m、b三点共线

化简得 ③

将①②两式代入③式,化简整理,得

∵ a、b是异于原点的点 ∴ 故点m的轨迹方程是 ( )为圆心,以4. 方法一:设c(

由 ,且 ,

∴ 又 ∵ ∴

∴ 方法二:∵ ,∴ 点c在直线ab上 ∴ c点轨迹为直线ab

∵ a(3,1)b( ) ∴ 5. 解:(1) ;(2)a(3,0),

由已知得 注意解得 ,因f(2,0),m( )故

(3)设pq方程为 ,由

得依题意 ∵

∴ ①及 ③

由①②③④得 ,从而所以直线pq方程为

相关推荐

热门文档

20 3563920