首页 > 学习资料 > 教案大全 >

九年级数学下教案导学案的设计与实施【精彩8篇】

网友发表时间 2455968

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“九年级数学下教案导学案的设计与实施【精彩8篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

九年级数学下教案导学案的设计与实施【第一篇】

本周我们学习了《反比例函数》,从教学设计到课堂教学,课后仔细回味,觉得有很多值得反思的地方。

《反比例函数》是在《一次函数》的基础上,再一次进入函数领域,是一个再认知的过程,它是初中阶段三大函数之一,区别于一次函数,但又建立在一次函数之上,本章内容的学习为以后更高层次函数的学习,以及函数、方程、不等式间的关系处理奠定了基础,在数学学习中起着承上启下的桥梁作用。本章蕴涵的类比、建模、转化、方程等数学思想方法,对学生观察问题、研究问题和解决问题都是十分有益的。

备课时,我仔细研读教材,认为本节课无论是重点和难点都是让学生掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。

设计合理的习题,立足于思维训练。每节课每个知识点都设计了针对性的变式练习,通过练习学生的解体技巧、方法、思维都得到了训练。在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者。特别是在处理练习时,我还是沿用之前的方式让学生充当老师讲解自己的观点,使我看到学生的智慧,听到了富有思想的回答,让人忍不住为他们鼓掌。在学习的过程中让学生觉得数学的简单,不仅是一种技巧,更是一种智慧,是还原数学最朴素的状态。只有这样,才能极大地释放孩子的潜能。

注重数学思想方法的渗透。在反比例函数的性质教学时,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,采用讨论的观点,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结出这其中体现出的数学思想方法:分类讨论和数形结合的思想方法。

回顾教学的过程,仍存在许多问题:

1、预见性不够。这主要体现在知识回顾中的问题,本来打算一点而过,结果学生的回答偏离了老师的预想,老师势必站在学生的角度给他们一一纠正,从而浪费了时间,自己对于突发事件的处理灵活性还不够,掌控课堂的能力有待提高。

2、对学生的情感关注太少。本来想营造一种和谐的课堂气氛,学生因为紧张回答问题不积极,不敢大胆发表自己的观点,课堂气氛死气沉沉,没有焕发出学生的激情。如果在一开始就用生动活泼激趣的语言导入课题,在教学过程中对少数同学的回答能及时给予表扬和激励,不但能消除学生的紧张情绪,也能激发学生的兴趣,坚定学习的信心。

3、角色转换不彻底。在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.不能大胆放心把课堂交还给学生.

今后还需要改进的地方:

1、在上课过程中,要始终关注学生的情感。因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。

2、不断学习新的教育理论,不断更新教学观念,使数学教育面向全体学生,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

3、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。

有反思才会有进步,作为一线的教育工作者,更应该勇于创新,积极接受挑战。

九年级数学下教案导学案的设计与实施【第二篇】

一、基本情况:

本学期是初中学习的关键时期本学期我担任初三年级(29、30)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的`高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。

二、指导思想:

初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

三、教学内容:

本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。

四、教学目的:

在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。

在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

五、教学措施:

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

九年级数学下教案导学案的设计与实施【第三篇】

2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。

3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。

进一步经历用树状图、列表法计算随机事件发生的概率。

正确地利用列表法计算随机事件发生的概率。

生:由几名学生动手摸一摸。

(教师准备一个不透明的小袋子,里面装有3个黑围棋和2个白围棋)。

师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的各种可能结果的可能性相同,结果总数为n(事件a发生的可能的结果总数为m),事件a发生的概率为。

如图,三色转盘,每个扇形的`圆心角度数相等,让转盘自由转。

动一次,“指针落在黄色区域”的概率是多少?

师:结合定义作详细分析,为两个例题教学做准备。

(分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区域的可能性相同,所有可能的结果总数为,其中“指针落在黄色区域”的可能结果总数为。若记“指针落在黄色区域”为事件a,则。)。

设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学。

例一,有甲、乙两个相同的转盘。让两个转盘分别自由转动一次,当转盘停止转动,求。

(1)转盘转动后所有可能的结果;

(2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率;

(3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率;

例题解析:

例1关键是让学生学会分步思考的方法。

教师分析并让学生学会画树状图(教师板演)。

任意抛掷两枚均匀硬币,硬币落地后,

(1)写出抛掷后所有可能的结果(用树状图表示)。

(2)一正一反的概率是多少?(指定一名学生板演)。

例2:一个盒子里装有4个只有颜色不同的球,其中3个红球,1个白球。从盒子里摸出一个球,记下颜色后放回,并搅匀,再摸出一个球。

(1)写出两次摸球的所有可能的结果;

(2)摸出一个红球,一个白球的概率;

(3)摸出2个红球的概率;

师:你能用列表法来解吗?

有没有更简单明了的方法?(学生应。

该有预习,能说出用列表法。)。

任意把骰子连续抛掷两次,

(1)写出抛掷后的所有可能的结果;

(2)朝上一面的点数一次为3,一次为4的概率。

(3)朝上一面的点数相同的概率。

(4)朝上一面的点数都为偶数的概率。

(5)两次朝上一面的点数的和为5的概率。

九年级数学下教案导学案的设计与实施【第四篇】

通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

二、教学目标和要求。

1、知识与能力目标知识技能目标。

理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。

2、过程与方法目标。

通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

3、情感、态度与价值观目标。

(1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。

(2)通过体验探索的成功与失败,培养学生克服困难的勇气。

(3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。

(4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。

三、提高教学质量的主要措施。

1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。

4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。

7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。

8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。

以上内容来自京翰教育一对一辅导——针对全国中小学开设课外辅导班,辅导孩子提高学习成绩,帮助家长正确教育孩子成长,辅佐老师更好指导学生学习方法。

九年级数学下教案导学案的设计与实施【第五篇】

从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

这一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程______________________。

学生分组探讨、交流,列出方程.

九年级数学下教案导学案的设计与实施【第六篇】

1.用分式表示生活中的一些量.

2.分式的基本性质及分式的有关运算法则.

3.分式方程的概念及其解法.

4.列分式方程,建立现实情境中的数学模型.

(二)能力训练要求。

1.使学生有目的的梳理知识,形成这一章完整的知识体系.

2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.

3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.

(三)情感与价值观要求。

使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.

九年级数学下教案导学案的设计与实施【第七篇】

1、理解用配方法解一元二次方程的基本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点。

重点:会用配方法解一元二次方程.

难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程。

(一)复习引入。

1、用配方法解方程x2+x-1=0,学生练习后再完成课本的“做一做”.

2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?

(二)创设情境。

怎样解这类方程:2x2-4x-6=0。

(三)探究新知。

让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。

(四)讲解例题。

1、展示课本例8,按课本方式讲解。

2、引导学生完成课本例9的填空。

3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

(五)应用新知。

课本,练习。

(六)课堂小结。

1、用配方法解一元二次方程的基本步骤是什么?

2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解。

一元二次方程的算法。

(七)思考与拓展。

不解方程,只通过配方判定下列方程解的。

情况。

(1)4x2+4x+1=0;(2)x2-2x-5=0;。

(3)–x2+2x-5=0;。

[解]把各方程分别配方得。

(1)(x+)2=0;。

(2)(x-1)2=6;。

(3)(x-1)2=-4。

由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。

九年级数学下教案导学案的设计与实施【第八篇】

数学是为生活服务的。本单元解决问题,就是要培养学生运用数学知识解决问题的能力。主要内容包括用乘法计算解决问题和运用除法计算解决问题。是在学生已经掌握了运用乘法和除法一步解决问题的基础上,进一步学习和掌握需要两、三步计算解决问题。教材通过实际生活联系非常紧密、贴近度很高的生动例子,让学生先从直观的图画中了解信息,再运用了解的信息来解决问题,既培养了学生了解分析信息的能力,也提高了学生解决问题的能力。

相关推荐

热门文档

20 2455968