高二数学教案 高二数学精编教案【推荐4篇】
【导言】此例“高二数学教案 高二数学精编教案【推荐4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
数学高二教案【第一篇】
学习目标
1、进一步体会数形结合的思想,提高分析问题解决问题的能力;
2、能借助正余弦函数的诱导公式推导出正切函数的诱导公式;
3、掌握诱导公式在求值和化简中的应用.
学习重点正切函数的诱导公式及应用
学习难点正切函数诱导公式的推导
学习过程
一、预习自学
1.观察课本38页图1-46,当- 414 < 414 < 414 时,角 414 与角2 414 的正切函数值有什么关系?
我们可以归纳出以下公式:
tan(2 414 )= tan(- 414 )= tan(2 414 )=
tan( 414 = tan( 414 =
2.我们可以利用诱导公式,将任意角的三角函数问题转化为锐角三角函数的问题,参考下面的框图,想想每次变换应该运用哪些公式。
414
给上述箭头上填上相应的文字
二、合作探究
探究1 试运用 414 , 414 的正、余弦函数的诱导公式推证公式tan( 414 和tan 414 .
探究2 若tan 414 ,借助三角函数定义求角 414 的正弦函数值和余弦函数值。
探究3 求 414 的值。
三、达标检测
1下列各式成立的是( )
A tan( 414 = -tan 414 B tan( 414 = tan 414
C tan(- 414 )= -tan 414 D tan(2 414 )= tan 414
2求下列三角函数数值
(1)tan(- 414 (2) tan240 414 414 (3)tan(-1574 414 )
3化简求值
tan675 414 + tan765 414 + tan(-300 414 ) + tan(-690 414 ) + tan1080 414
四、课后延伸
求值: 414
高二数学优秀教案【第二篇】
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、考纲要求
1.会用坐标表示平面向量的加法、减法与数乘运算。
2.理解用坐标表示的平面向量共线的条件。
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算。
4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件。
三、教学过程
(一)知识梳理:
1.向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标。
(2)设A(x1,y1),B(x2,y2),则
=xxxxxxxxxxxxxxxx_
||=xxxxxxxxxxxxxx_
(二)平面向量坐标运算
1.向量加法、减法、数乘向量
设=(x1,y1),=(x2,y2),则
+=-=λ=.
2.向量平行的坐标表示
设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.
(三)核心考点·习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设(1)求3+-3;
(2)求满足=m+n的实数m,n;
练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)
(m,n∈R),则m-n的值为
考点2平面向量共线的坐标表示
例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)
若(+k)∥(2-),求实数k的值;
练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
方法总结:
1.向量共线的两种表示形式
设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.
2.两向量共线的充要条件的作用
判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值。
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为;的值为。
提示解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。
练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于( )
思考两非零向量⊥的充要条件:·=0? .
解题心得:
(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。
(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为( )
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?
解题心得:
求向量的模的方法:
(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解。
五、课后作业(课后习题1、2题)
高二数学教案优秀教案【第三篇】
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1.以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。
这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等。
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础。
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
高二数学教案【第四篇】
教学目标
1.能够用语言描述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能够根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力,培养学生的空间想象能力和抽象思维能力。
教学重难点
教学重点:通过让学生观察真实的空间物体和模型,概括出柱、锥、台、球的结构特征。
教学难点:如何概括柱、锥、台、球的结构特征。
教学过程
1.情景引入
教师提出问题,引导学生观察、举例和相互交流,介绍本节课所学内容,出示课题。
2.阐述目标,检查预习
3.合作探究、交流展示
(1)引导学生观察棱柱的实物和图片,说出它们各自的特点是什么?它们有什么共同点?
(2)组织学生分组讨论,每组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征:
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两个平行四边形的公共边互相平行。概括出棱柱的定义。
(3)提出问题:请列举身边的棱柱并进行分类。
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的。结构特征,并得出相关的定义、分类和表示。
(5)让学生观察圆柱,并演示圆柱的实物模型,概括出圆柱的定义以及相关的定义和表示。
(6)引导学生思考圆锥、圆台、球的结构特征,并得出相关定义、表示以及分类,借助演示模型引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.提问回答,解决问题,扩展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余各面都是平行四边形的几何体是否为棱柱?(通过反例说明)
(2)棱柱的任何两个平面都可以作为棱柱的底面吗?
(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
必须在绕直角三角形的某一条边的条件下,几何体才有可能是圆锥吗?