首页 > 学习资料 > 教案大全 >

北师大版数学六年级教案优秀8篇

网友发表时间 3568370

本教案围绕六年级数学知识,涵盖数与代数、图形与几何、统计与概率等内容,通过多样化的教学活动,提升学生的数学思维和实践能力。以下是阿拉网友为您整理的北师大版数学六年级教案优秀8篇优秀范例,供您学习参考,希望对您有帮助。

北师大版数学六年级教案【第一篇】

教学目标:

1、使学生理解和掌握乘法交换律和结合律。

2、借助观察、比较、概括等方法,应用乘法交换律和结合律进行简便计算,培养学生的分析推理能力。

3、培养学生运用新知识解决实际问题的能力。

教学重难点:

1、使学生理解并运用乘法交换律和结合律。

2、乘法交换律和结合率的运用。

教具准备:

口算卡片。

教学过程:

一、导入。

1、出示口算卡片。

50__70=125__8=40__5=11+7=4+25=。

70__50=8__125=5__40=7+11=25+4=。

2、复习乘法算式的各部分名称:

板书:5__4=20。

因数因数积。

二、教学实施。

1、领会主题图。

(1)、观察图意。

(2)、说说你从图中你了解到了那些信息。

(3)、根据图中带给我们的信息,可解决那些问题?

2、出示例1:负责挖坑、种树的一共有多少人?

(1)、分析数量关系。

(2)、列式计算:4__25=100(人)或25__4=100(人)。

(3)、引导观察,比较两种解决的结果,这两个算式之间可以用什么符号连接?(4__25=25__4)。

(4)、这个等式说明了什么?(把4和25两个因数交换位置,积不变)。

(5)、举例。

(6)、归纳总结:

交换两个因数的位置,积不变,叫乘法交换律。

(7)、用字母表示乘法交换律。

a__b=b__a。

说一说a、b可以是那些数?(a、b可以是任何两个不同的数)。

(8)、找一找,主题图中哪个问题可以用乘法交换律来解决。

师:加法中有结合律,乘法中是不是也会有结合律呢?乘法的结合律会是什么样的?我们一起研究一下。

2、出示例2:有25个小组,每组要种5棵树,每棵树要浇2桶水。一共要浇多少桶水?

(1)、读题,分析数量关系。

(2)、请同学用不同的方法解答。板书解题思路。

方法一:(25__5)__2方法二:25__(5__2)。

=125__2=25__10。

=250(桶)=250(桶)。

(3)、小组讨论两种解法的相同点和不同点。

(4)、这两个算式之间可以用什么符号连接?

板书:(25__5)__2=25__(5__2)。

(5)、观察下面三组算式,说说你发现了什么?

(15__6)__10()15__(6__10)。

(125__80)__3()125__(80__3)。

(12__25)__4()12__(25__4)。

(6)、归纳总结:

三个数相乘,先乘两个数,或者先乘后两个数,积不变,叫乘法结合律。

(7)、用字母表示乘法结合律:(a__b)__c=a__(b__c)。

这里a、b、c表示的是大于或等于0的整数。

3、比较、概括、归纳。

比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?

交换律是两数相加(乘)的规律,既交换两个加(因)数的位置,和(积)不变;结合律是三数相加(乘)的规律,既可以从左往右计算,也可以先把后两个数先相加(乘),和(积)不变。

4、巩固提高。

(1)、填一填:

75__26=()__()8__2=2()。

a__b=()__()a__()=15__()。

125__7__8=()__()__7(40__15)__[]=40__([]__6)。

25__(4__[])__([]__4)__132__4__6__5=(4__6)__([]__[])。

(2)、学校教学楼共有4层,每层有5间教室,每个教室安6盏灯。一共需要多少盏灯?

6、课堂小结:

通过本节课的学习,你都有哪些收获?

北师大版数学六年级教案【第二篇】

1、认识常用的土地面积单位公顷和平方千米,通过观察、计算和推理等活动,体会1公顷和1平方千米的实际大小。

2、掌握平方米、公顷和平方千米之间的进率,能进行简单的面积单位之间的换算。

3、积极参与学习活动,体会数学与生活的联系,培养空间观念及初步的应用意识。

教学重难点。

重点:掌握平方米、公顷和平方千米之间的进率,能进行简单的面积单位之间的换算。

难点:体会1公顷和1平方千米的实际大小。

课时安排。

2课时。

课时教案。

课题认识公顷课型新授执教人备课时间。

上课时间。

教学。

内容教材第34页例1。

教材。

分析。

教材通过国家体育场“鸟巢”的占地面积,让学生感受比较大的面积,引出土地面积单位“公顷”。接着以“边长100米的正方形”来表征面积单位“1公顷”,帮助学生建立“公顷”与“平方米”的联系。

1、使学生知道常用的土地面积单位公顷;体会1公顷的实际大小;会进行。

简单的单位换算。

2、使学生能借助计算器,应用相关面积公式和面积单位换算解决一些简单的实际问题。

3、在学习活动中进一步体会数学与生活的联系,培养相互合作的能力。

教学。

重难点。

认识公顷的含义,体会1公顷的实际大小。

教具。

学具。

准备。

多媒体课件。

教师活动学生活动二次备课。

活动一、创设情境,引入公顷。

1、同学们能估计一下我们教室的占地面积有多大吗?用什么面积单位比较合适?

2、引入:请同学们欣赏下面一组图片。(先后呈现南京明孝陵、北京中华世纪坛、鸟巢和我国大片森林的画面以及相应的文字说明。)。

3、揭示课题:今天我们就来学习公顷这一常用的土地面积单位。

(板书:认识公顷)。

活动二、自主探索,认识公顷。

1、认识1公顷的含义。

指出:边长100米的正方形土地面积就是1公顷。

2、体会1公顷的实际大小。

出示“试一试”

提问:你能计算这块平行四边形菜地的面积吗?用计算器算一算。

小结:把以平方米为单位的数量改写成以公顷为单位的数量时,可以用原来的数除以10000,或者直接把原数的小数点向左移动四位。

3、尝试单位换算。

4、完成“做一做”。

活动三、理解应用、强化体验。

1、指导完成练习六第1题。

2、指导完成练习六第2题。

3、指导完成练习六第3题。

4、指导完成练习六第4题。

四、总结归纳,提升经验。

今天我们学习了什么内容?你又有了哪些新的收获?说给大家听听。

学生估计学校的占地面积有多大?用什么面积单位比较合适?学过的面积单位有哪些?

猜一猜,1公顷有多大?

想象一下,边长100米的正方形土地有多大?

自学:1公顷的含义。

把学生带到操场,让28个学生手拉手围成一个正方形。

28个同学手拉手围成的这个正方形,面积大约是100平方米。

分小组合作测量长和宽,并计算出面积,再推算出大约多少个这样的教室地面的面积是1公顷。

将本文的word文档下载到电脑,方便收藏和打印。

北师大版数学六年级教案【第三篇】

教学目标:

1、知道连加、连减算式的含义和运算顺序。

2、能比较熟练地口算连加、连减式题。

3、初步感知连加、连减式题与日常生活的联系,学会表达和交流,培养学生观察和解决简单的实际问题的能力。

教学重点:通过联系实际情境,体会连加连减的意义和理解运算顺序。

教学难点:

1、学生在学习的过程中学会如何用语言表达数学问题,同时学会倾听、交往与合作。

2、理解连减的含义。

教学过程:

一、情境引入。

1、课件演示情境图(聪明屋)。

师:今天,我们要去数学聪明屋里去玩玩。在聪明屋里有很多聪明题,看看我们班上谁最聪明。看,四位小动物先出来欢迎我们了。看看他们给我们带来了什么题目。(课件)。

长颈鹿小狗小乌龟小猫。

师:你想和谁交朋友,就算算它带给你的题目吧!(请四位学生口答)。

2、小结。

师:今天我们用学到的数学知识为小动物解答了难题,你们可真了不起,希望你们在聪明屋里学到更多的数学知识。

二、探究新知。

(一)探究连加。

1、说图意。课件演示小鸡图(动态)。请学生仔细观察。

(1)师:小鸡也想和我们交朋友,在图上你看到了什么?

(原来有5只小鸡在吃米,先跑来了两只,又跑来了一只。)。

(2)师:根据你看到的,你可以提什么数学问题?(一共有多少只小鸡?)。

学生复述图意,指名说,同桌说,齐说。

2、尝试列式。

师:要知道一共有几只,我们可以用什么方法做?(加法)为什么?

(1)名学生口头列式。5+2+1=。

(2)读算式。(师:刚才的小朋友读得真不错,你也跟着他读一读吧)。

(3)比较不同。(请小朋友观察一下,这个算式和我们以前学的有什么不一样?——有三个数,两个加号)。

(4)小结:像这样把三个数或更多的数加在一起,就叫连加。(板:连加)。

3、说算理。

师:这个算式你会算吗?(指名说:先算5+2等于7,再算7+1等于8)。

请学生跟说,齐说,同桌说。

(二)探究连减。

1、说图意。

师:你们帮小鸡解决了难题,他们可高兴了,过了一会儿,又发生了什么事呢?

(原来有8只小鸡,先跑掉了3只,又跑掉了2只,还剩下几只?)。

指名说图意(同连加)。

2、写算式。

(1)师:这道题该用什么方法来解决呢?——减法,为什么?

学生列式。(板书:8-3-2=)齐读算式。

(2)师:这道算式和以前的减法有什么不同?你能给它取个名字吗?(板书:连减)。

(3)小结:像这样从一个数里连续去掉几个数,用连减。

3、说算理。

师:你会算吗?(先算8-3等于5,再算5-2等于3)。

学生跟说,齐说,同桌说。

(三)小结。

今天我们学会了连加、连减,在计算时,一般是从左往右的顺序依次计算的。

三、练习巩固。

师:聪明屋里还有很多聪明题,需要我们小朋友来解答,请你们帮帮这些小动物的忙。

1、课件出示燕子图、猪八戒吃西瓜图。(请学生复述图意,再在课本上列式计算,并说算理)。

2、课件出示小棒图和三角形图。(方法同上)。

3、算式(折叠卡片)。——学生说出计算过程。

3+4+16+4+04+3+22+2+4。

8-5-39-5-410-6-28-0-6。

北师大版数学六年级教案【第四篇】

3、即时练习。

完成课后的说一说。

(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。

(2)说一说,你有什么体会。

学生说信息,并计算各种成分的百分比。

汇报计算结果,订正。

学生发言、交流。

学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。

观察,说出获得的信息。

根据教师引导说出发现。

从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。

观察数据,发现,说出不同,说出自己的看法。

进行计算,订正。

北师大版数学六年级教案【第五篇】

包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。

学情分析。

1、学生已有的知识基础。

在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。

2、学生已有的生活经验。

学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。

3、学生学习本课内容可能遇到的困难及学习方式的研究。

学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。

教法学法。

让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。

教学目标。

知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。

过程与方法目标:1、体验解决问题的基本过程和方法,提高解决问题的能力。

2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。

教学重点难点。

重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。

难点是:理解最节省包装纸的包装策略。

教具准备:多媒体课件,师生共同准备若干个长方体纸盒。

教学过程。

一、课前交流。

师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)。

师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)。

师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!

二、激发兴趣,导入课题。

上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。

物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)。

再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)。

师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)。

师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)。

设计意图:既复习了旧知识,又为下面组合长方体表面积计算打。

下了知识基础和情感基础。。

三、动手操作,初步感知。

1、小组活动,自主探究。

师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)。

师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)。

问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)。

师:重合的面在包装时需要用包装纸包装吗?(不需要)。

师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)。

请一名学生展示摆放的方法。(教师在黑板上用实物展示。)。

问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)。

2、展开猜想,交流讨论。

师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)。

师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)。

师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)。

问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)。

3、验证猜想,得出结论。

师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)。

问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)。

先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)。

师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)。

师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)。

四、组合三个,再次体验。

北师大版数学六年级教案【第六篇】

第一课时:直方图(1)。

学习目标:了解频数分布表的制作步骤。

重点、难点:频数分布表的制作。

学习过程:

问题一:下面数据是截止2002年费尔兹奖得主获奖时的年龄:。

293935333928333531313732。

383631393238373429343832。

353633293235363739384038。

373938343340363637403138。

请根据下面的不同分组方法,你觉得比较哪一种分组能更好地说明费尔兹奖得主获奖的年龄分布,并列出频数分布表,画出频数分布直方图.

解:1.计算极差(最大值与最小值的差):。

2.决定组距与组数:。

3.列频数分布表:。

年龄分组划记频数。

合计。

4.画出频数分布直方图。

课堂练习:

1、光明中学为了解本校学生的身体发育情况,对八年级同龄的名女生的身高进行了测量,结果如下(数据均为整数,单位:):。

将数据适当分组,绘制频数分布直方图。

2、体育委员统计了全班同学60秒跳绳的次数,并列出下列频数分布表:。

(1)全班有名同学;。

(2)组距是,组数是;。

(3)跳绳次数在范围的同学有人,占全班同学%;(精确到%)。

(4)画出适当的统计图表示上面的信息;。

(5)你怎样评价这个班的跳绳成绩?

3、为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.

组别次数x频数(人数)。

第1组801006。

第2组1001208。

第3组120140a。

第4组140。

第5组160。

请结合图表完成下列问题.

(1)表中的a=______.

(2)请把频数直方图补充完整.

(3)若八年级学生1min跳绳次数(x)达标要求是:x120为不合格,120140为合格,140160为良,x160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议.

第二课时:直方图(二)。

学习目标:能正确画出频数分布直方图和画频数折线图。

重点、难点:能正确地画出频数分布直方图。

学习过程:

解:(1)计算极差:(4)画频数分布直方图和频数折线图:

(2)决定组数和组距:

(3)列频数分布表:

平行线及平行公理。

教学建议。

1、教材分析。

(1)知识结构。

本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.

(2)重点、难点分析。

本节的重点是:平行公理及其推论.承认经过直线外一点有且只有一条直线与这条直线平行的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的有且只有的意义.

本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的在同一平面内的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.

另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.

2、教法建议。

(1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.

(3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.

(4)平行公理及其推论。

在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.

教学设计示例。

一、教学目标。

1.了解平行线的概念,理解学过的描述图形形状和位置关系的语句.

2.掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图.

3.通过画平行线和按几何语句画图的题目练习,培养学生画图能力.

4.通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力.

二、学法引导。

1.教师教法:尝试法、引导法、发现法.

2.学生学法:在教师的引导下,尝试发现新知,造就成就感.

三、重点、难点及解决办法。

(-)重点。

平行公理及推论.

(二)难点。

平行线概念的理解.

(三)解决办法。

通过引导学生尝试发现新知、练习巩固的方法来解决.

四、教具学具准备。

投影仪、三角板、自制胶片.

五、师生互动活动设计。

1.通过投影片和适当问题创设情境,引入新课.

2.通过教师引导,学生积极思维,进行反馈练习,完成新授.

3.学生自己完成本课小结.

六、教学步骤。

(-)明确目标。

掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力.

(二)整体感知。

以情境引出课题,以生活知识和已有的知识为基础,引导学生学习了平行公理及其推论,并以变式训练强化和巩固新知.

(三)教学过程。

创设情境,引出课题。

将本文的word文档下载到电脑,方便收藏和打印。

北师大版数学六年级教案【第七篇】

1.第二单元“百分数的应用”。学生将在这个单元的学习中,在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解;能利用百分数的有关知识或运用方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的密切联系。

2.第四单元“比的认识”。学生将在这个单元的学习中,经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系;在实际情境中,体会化简比的必要性,会运用商不变的性质和分数的基本性质化简比;能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

(二)空间与图形。

1.第一单元“圆”。学生将在这个单元的学习中,结合生活实际,通过观察、操作等活动认识圆及圆的对称性,认识到同一个圆中半径、直径、半径和直径的关系,体会圆的本质特征及圆心和半径的作用,会用圆规画圆;结合具体情境,通过动手实验、拼摆操作等实践活动,探索并掌握圆的周长和面积的计算方法,体会“化曲为直”的思想;结合欣赏与绘制图案的过程,体会圆在图案设计中的应用,能用圆规设计简单的图案,感受图案的美,发展想象力和创造力;通过观察、操作、想象、图案设计等活动,发展空间观念;结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象,解决一些简单的实际问题;结合圆周率发展历史的阅读,体会人类对数学知识的不断探索过程,感受数学文化的魅力,激发民族自豪感,形成对数学的积极情感。

2.第三单元“图形的变换”。学生将在这个单元的学习中,通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,能有条理地表达图形的平移或旋转的变换过程,发展空间观念;经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。

3.第六单元“观察物体”。学生将在这个单元的学习中,能正确辨认从不同方向(正面、侧面、上面)观察到的立体图形(5个小正方体组合)的形状,并画出草图;能根据从正面、侧面、上面观察到的平面图形还原立体图形(5个正方体组合),进一步体会从三个方向观察就可以确定立体图形的形状;能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围;经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点、观察角度的变化而改变,能利用所学的知识解释生活中的一些现象。

(三)统计与概率。

第七单元“统计”。学生将在这个单元的学习中,通过投球游戏、两城市降水量等实例,认识复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点;能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;能读懂简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。

(四)综合应用。

本册教材安排了三个大的专题性的活动,即“数学与体育”、“生活中的数”,旨在促使学生综合运用所学的知识解决某一生活领域的实际问题。教材还安排了“看图找关系”的专题,旨在使学生体会图能直观、清晰、简捷地刻画关系。同时,还在其他具体内容的学习中,安排了某些综合运用知识解决简单的实际问题的活动。学生在从事这些活动中,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。

(五)整理与复习。

教材安排了两个整理与复习。整理与复习改变单纯做题的模式,注重发展学生自我反思的意识。每个整理与复习都分成三部分:对所学内容的整理,提出数学问题并尝试解答一些练习题目。

北师大版数学六年级教案【第八篇】

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点。

1.结合丰富的事例,认识正比例。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点。

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具。

课件。

教学过程。

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一。

1.观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

说说从数据中发现了什么?

3.小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的.周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二。

1.一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2.请把下表填写完整。

3.从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三。

1.一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2.把表填写完整。

3.从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4.说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5.正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6.观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想。

1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2.小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011。

爸爸的年龄/岁3233。

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报。

在老师的小结中感受并总结正比例关系的特征。

活动二:练一练。

1.判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

2.根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)。

3.买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由。

应付的钱数随购买的枚数的变化而变化,而且比值不便。所以应付的钱数与买邮票的枚数成正比例。

4.找一找生活中成正比例的例子。

5.先自己独立完成,然后集体订正,说理由。

相关推荐

热门文档

20 3568370