因数和倍数教学反思【汇集5篇】
【阅读指引】阿拉题库网友为您分享整理的“因数和倍数教学反思【汇集5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
因数和倍数教学反思【第一篇】
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。本节课又是这一单元的的教学重点。为让学生很好的感受因数与倍数的意义,能够熟练的找出一个数的因数与倍数,灵活地处理了教材,分为两课时进行。第一课时只让学生认识了因数和倍数的意义及找一个数的因数的方法,效果不错。
一、设计情境,引起思考。
改变教材的情境图,用学生有兴趣的情意引入课题:有12个小方块,要求摆成一个长方体,你想怎么摆。引起学生思考,学生想到有3种摆法,每种摆法怎么列式求出一共有多少方块?由于方法的多样性,为不同思维的展现提供了空间。从而理解决因数与倍数的意义。
二、引导学生探求找因数的方法,使探索有方向。
如何找一个数的因数是这节课的重点,首先放手让学生找出24的因数,由于个人经验和思维的差异,出现了不同的方法与答案,在探索这些方法和答案的过程中,学生明白了如何求出一个数的因数的方法,从而掌握了知识点。
根据学生的学习特点,灵活的应用教材,使之服务于教学,让教学有效的进行,才能达到教学的目的。
因数和倍数的教学反思【第二篇】
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的。概念。
虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:
11÷2=5……1。问:11是2的倍数吗?为什么?因为5×=4,所以5和是4的因数,4是5和的倍数,对吗?为什么?
特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。
因数和倍数教学反思【第三篇】
《因数和倍数》是一节概念课。教学时我首先以拼图比赛为素材,让学生动手操作快速把12个小正方形摆出一个长方形,再让学生用乘法算式表示出所摆的长方形,在交流中得到三种不同的摆法和三种不同的乘法算式。借助乘法算式引出因数和倍数的意义,使学生初步建立了“因数与倍数”的概念。 这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的'倍数后,我紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
最后引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。
由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。
因数和倍数的教学反思【第四篇】
因数和倍数是苏教版五年级下册第三单元的内容。这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而教材是通过用12个小正方形拼长方形并写乘法算式来引入因数和倍数。我在教学时做了一些下的改动,例题从12个相同的正方形拼长方形开始教学,学生对这个活动已经很熟悉,几乎人人都知道有不同的拼法,都能顺利地拼出三种不同的长方形。因此,我要求不用12个正方形拼,而是在脑子里“想像拼”,不能想象的就在本子上“画拼”,“拼”好后,我也要求只用一个乘法算式表示你的拼法,这样不仅节省了不少时间,更主要的是我觉得这样的操作活动,虽然看起来不热闹,但学生的'学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏,有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快可找出12的因数,接着再提问:你是怎么看出来的?根据一个乘法算式可以得到12的几个因数?在学生回答之后,我接着请同学们用刚才的方法自己找一找36的因数有哪些。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。虽然这样的教学设计,看起来学生的主动探索过程好像削弱了好多,但根据试上这课时的情况看,这样的设计比直接让学生自主探索36的因数有哪些学习效果要好一些。直接探索36的因数有哪些,放得太开,学生无从下手,暴露出了许多问题,有的不知道该如何找因数,有的没有找全,而学生在教师的引导下,发现了找一个数因数的方法后接着去找36的因数,那么他所关注的是如何有序地找出一个数的因数,这样的思考更有针对性,目标也更明确,对知识的掌握也能做得更好。
倍数和因数教学反思【第五篇】
教学目标:
1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
教学重点:
理解因数和倍数的含义。
教学难点:
探索并掌握找一个数的倍数和因数的方法。
教学过程:
一、认识倍数和因数
1、操作活动。
(1)小黑板出示要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法表示出来。
(2)整理:全班交流,分别板书4×3=1212×1=126×2=12
3、学习“倍数”和“因数”的概念
(1)谈话:刚才同学们通过不同的摆法摆出了不同的长方形,而且还写出了3个不同的乘法算式,今天,我们就一起来研究乘法算式中,数与数之间的关系。(出示:倍数和因数)
(2)根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?
板书:12是4的倍数,12是3的倍数
4是12的因数,3是12的因数
(3)根据6×2=12,你能说出哪个数是哪个数的。倍数,哪个数是哪个数的因数吗?根据12×1=12呢?
(4)练一练:从3×6=1836÷4=9中任选一题说一说。
为什么4和9是36的因数?
4、小结:根据乘法或除法算式我们可以确定谁是谁的因数,谁是谁的倍数。为了方便,在研究倍数和因数时,所说的数一般指不是0的自然数。
二、探索找一个数的倍数的方法
1、谈话:在刚才的谈话中,我们知道了12是3的倍数,18也是3的倍数
提问:3的倍数只有这两个吗?
你还能再写出几个3的倍数?
你是怎样想的?
你能按照从小到大的顺序有条理地说出3的倍数吗?
你能把3的倍数全都说完吗?
可以怎样表示?
2、议一议:你有没有发现找3的倍数的小窍门?(在找3的倍数时,可以按从小到大的顺序,依次用1、2、3……与3相乘,每次乘得的积都是3的倍数)
3、试一试:
(1)2的倍数有
(2)5的倍数有
4、想一想:观察上面几个例子,你发现一个数的倍数有什么特点?
5、练一练:想想做做2
三、探索求一个数的因数的方法
1、提出问题:你能找出36的所有因数吗?
2、四人小组合作完成
3、交流整理找一个数的因数的方法。
4、试一试(既要一组一组地找,又要按次序排列)
15的因数
16的因数
5、比一比:根据上面几个例子,你发现一个数的因数有什么特点?和同桌说一说
6、练一练:想想做做
四、课堂总结。
1、这节课,你有什么收获?
五、巩固提高
1、判断
(1)12是倍数,3是因数
(2)6既是2的倍数,又是3的倍数。
(3)25以内4的倍数有:4,8,12,16,20,24……
(4)6的最小倍数是12,12的最小因数是6。
2、看谁反应快
游戏准备:学生按学号编成连续的自然数。(课前)
游戏规则:凡是学号符合以下要求的,请站起来,看谁反应快?
(1)谁的学号是5的倍数
(2)谁的学号是24的因数
(3)谁的学号是30的因数
(4)谁的学号是1的倍数
反思:
在教学过程中出现了一个问题:是在提问:“根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?”时,发现学生根本不能回答,本来以为学生在三年级的时候应该对这部分的内容有所了解,能顺利回答,但是在课后与三年级的教师交流后发现没有这方面的内容安排。由此,我想:新课程实施了五年,我其实还是门外汉,还不能很好地适应新课程的要求,新课程的教材编排具有连续性,而老版本经常是一个知识点安排在一起,注重深度。看来教师不光要关心自己年级的教材内容,还得知道整个教材编排体系,知道各个年级知识点之间的联系。这样才能更好地完成教学任务,使学生得到应有的发展而不是降低要求的发展或者是被强行提高要求的发展。