首页 > 学习资料 > 教学反思 >

实用平行四边形的面积教学反思(通用4篇)

网友发表时间 3392413

【阅读指引】阿拉题库网友为您分享整理的“实用平行四边形的面积教学反思(通用4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

平行四边形的面积教学反思【第一篇】

本节课我的目标意识较强,以“创设情境——自主探究——操作验证——实践应用”为主线,探究过程细化为猜想、操作、推导和深化四个层次,教学思路清晰,重点难点突出,适时充分地创造条件,引导学生在参与探究知识形成的过程中想问题、寻方法、得结论,从而培养了学生的操作、观察、分析的能力和探究过程中用不同方法解决问题的能力。

“转化”是数学学习和研究的一种重要思想方法,平行四边形面积公式的推导所蕴含的转化思想,对学生今后推导三角形、梯形面积公式具有重要意义。整个教学过程中我以学生为主体,鼓励学生自主探究,大胆质疑,不仅启发学生把研究的图形转化为已经会计算的面积的图形,渗透转化的数学思想方法,而且着重让学生通过画、剪、拼、摆等动手操作的活动来让学生亲历自主探究的过程。同时引导学生去探究所研究的图形与转化后的图形之间存在的等量关系,从而导出面积计算方法,重视引领学生探索平行四边形面积计算公式背后所隐含的知识结构的提炼,从而让学生更好地建立起平行四边形面积计算公式这一数学模型。

本节课练习的设计目标明确、形式多样、层层递进,第一题的基础练习从最基本的已知平行四边形的底和高直接计算面积开始,熟练运用计算公式计算。第二题要求学生认真审题,让学生发现多余条件的情况下需要选择相对应的底和高计算面积,进一步感悟底和高对应关系,并发挥此题的作用,进行逆向应用,由面积和高求出底,由面积和底求出高。第三题是开放练习题,让学生结合平行线间距离处处相等发现等底等高平行四边形面积相等;此题开放度广,为学生今后逻辑思维的发展和解题能力的提高打下了良好的基础。第四题是求出方格纸格中的平行四边形和三角形面积,在数三角形面积时,初步渗透它的面积计算及其与平行四边形的关�

综上所述,整节课的教学力求体现“在探究活动中感悟——在操作活动中合作交流——在反馈发现中总结规律——在灵活运用中拓展延伸”这一基本课堂教学流程。学生在丰富的活动探究中体验到知识的产生、发展的过程,不仅增长了知识、提高了能力,而且获得了深层次的情感体验。

平行四边形的面积教学反思【第二篇】

本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。

1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的。面积计算公式。

2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。

学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。

加强学生的语言表述能力,做到规范、严谨。

平行四边形的面积教学反思【第三篇】

在教学完这节课后,听课老师对本节课进行了评价,结合自身的体会,作如下反思:

1、以数格子和财主分地的故事导入新知识的学习,激发学习兴趣。这个年龄的学生都喜欢听故事,我在课前用童话故事引出要讲的新内容,把学生的注意力一下子吸引过来,增强了学习新知识的兴趣。

2、在本节课的教学中,我先出示一个长方形,让学生说出它的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,再出示一个平行四边形让学生算出它的面积,这个问题很快激起学生的探究欲望,为下面要探讨的平行四边形面积公式的推导做好铺垫。

3、动手操作,自主探索,体验成功。

小组讨论怎么把平行四边形转化成学过的图形,并在小组讨论中得出平行四边形的底与长方形的长、平行四边形的高与长方形的宽以及两者面积之间的关系,并从长方形的面积公式推导出平行四边形的面积的计算公式,培养了学生迁移的能力,学生从中体验了探索成功的乐趣。

4、体现学生的主体地位,改变以往的“以教师为中心”的教学方式。在推导平行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。

5、纠正错误时注意面向全体。

练习中,学生计算平行四边形的面积,我发现一生用错单位了,一生算面积用底乘高不是底边上的高。在黑板上给他们指了出来。并把他的错误在班上强调,鼓励孩子们做个细心的孩子,效果很好。

6、课堂教学中,“放”的力度不够。

针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。

平行四边形的面积教学反思【第四篇】

平行四边形的面积,是教师相当熟悉的一堂课,我曾多次听这课,发现平行四边形的面积教学存在三种状态:第一种状态,教师认为学生学习数学就是要掌握知识,所以教学注重对学习“平行四边形面积”的知识铺垫,仅仅关注学生对平行四边形面积计算方法的识记与演练,掌握;只要结果,不要过程。第二种状态,教师开始重视学生获得知识的过程,但重视过程是为了更快地接受知识、更好地理解知识,却忽视了过程本身的价值。第三种状态,希望学生不仅获得平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。我一直在苦苦追求着第三种状态,因此在课前、课中我一直思考以下四个问题:

1、数学学习,除了关注知识的传承,还应关注什么?

2、怎样从学生的角度出发设计教学?

3、怎样让数学课堂变得厚重?除了显性课程外,学生还能获得哪些方面的发展(隐性课程)?

一节厚重的数学课,总是能够让人看到学生数学素养的提升。

一节厚重的数学课,总是能够让人看到学生数学地思考问题。学生有潜力,并非这个孩子考试的分数高,而是这个孩子的后劲足。这些后劲足的孩子思维活跃,往往能在复杂的信息中抓住关键点,能透过复杂的现象抓住数学的本质。也就是,这些孩子会数学地思考问题。

4、如何优化课堂结构?

基于以上四个问题的思考,我把“有益的思考方法和应有的思维习惯”放在本节课教学的首位。在数学教学中如何以数学知识为载体,培养学生有益的思考方式和思想方法。我在设计与执教“平行四边形的面积”一课中获得一些启示。

“转化”法是开展数学研究、解决数学问题常用的方法,在小学数学教学中起着十分重要的作用。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。

教师首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?

激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,我不满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。

现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。

这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。

这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。

相关推荐

热门文档

21 3392413