因数和倍数教学反思(精彩4篇)
【导言】此例“因数和倍数教学反思(精彩4篇)”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
因数和倍数教学反思【第一篇】
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。我觉得这部分内容学生初次接触,对于学生来说是比较难掌握的内容。尤其对因数和倍数和是一对相互依存的概念,不能单独存在,不是很好理解。我通过捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。所以在上课之前我特意和孩子们玩了一个小游戏。用“我和谁是好朋友”这句话来理解相互依存的意思。即“我是谁的好朋友”,“谁是我的好朋友”,而不能说“我是好朋友”。学生对相互依存理解了,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来帮助学生理解因数和倍数的概念。
一是教材虽然不是从过去的整除定义出发,而是通过一个乘法算式来引出因数和倍数的概念,但本质上任是以“整除”为基础。所以我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。我举了一些反例加以说明。
二是要学生注意区分乘法算式中的“因数”和本单元中的“因数”的`联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数,而后者是相对于“倍数”而言的,两者都只能是整数。三是要注意区分“倍数”与前面学过的“倍”的联系与区别。“倍”的概念比“倍数”要广。可以说“是的5倍”,也可以说“1是3的5倍”,但我们只能说“15是3的倍数”,却不能说“是的倍数”。我在课堂上反复强调,帮助孩子们认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,不会模糊了。
因数和倍数教学反思【第二篇】
教学中我发现倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些改动,让学生用12个小正方形摆长方形,然后自己用算式把摆法表示出来。这样学生的算是就不局限于乘法,有一部分学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在也有很多学生学习奥赛,所以我从整除的角度也介绍了因数与倍数的概念.由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动的接受。如让学生思考:你觉得3和12、4和12之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:12是3的倍数,那反过来3和12是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到12是3的倍数,反过来3就是12的。因数,接下来4和12的关系,学生都争者要回答。
如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不老师给予有有效得多。
因数和倍数教学反思博客【第三篇】
教学内容:青岛版教材小学数学五年级上册88—91页。
1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。
教学难点:探索求一个数因数或倍数的方法。
教具准备:多媒体课件、学生练习题
师:同学们看这是什么?
生:小正方形。
师:想不想知道王老师给大家带来了多少个这样的小正方形?
生:想。
师:多少个?
生:12个。
师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?
生:能。
设计意图:以学生熟悉情景引入,激发学生的好奇心。
师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?
生:好!
学生汇报:
生1:1×12=12
师:他是怎么摆的?
生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。
课件出示摆法。
师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)
生2:2×6=12
师:猜一猜他是在怎么摆的?
生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。
师:这两种情况,我们也算一种。
生3: 3×4=12
师:他又是怎么摆的?
生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。
师:还有其他摆法吗?
生:没有了。
师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)
2.教学“因数和倍数”的意义。
师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。
学生汇报:任选一道回答。
生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。
师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。
师:还有一道算式,谁来说一说?
生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。
师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。
师:通过刚才的练习,你有没有发现12的因数一共有哪些? (生边说老师边有序的用课件出示12的所有的因数。)
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36
设计意图让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。
1、找一个数的因数。
师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?
师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?
生:有。
师:老师提个要求:
1)、可以独立完成,也可以同桌交流。
2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。
2、探索交流找一个数的因数的方法。
找一名有代表性的作业板书在黑板上。
师:他找对了吗?
生:没有,漏下了一对。
师:为什么会漏掉?仅仅是因为粗心吗?
生:不是,他没有按照一定的顺序找!
师:那么要找到36所有的因数关键是什么?
生:有序。
师生共同边说边有序的把36的所有的因数板书出来。 师:还有问题吗?
生:没有了。
生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?
生:再接着找就重复了。
师:那么找到什么时候就不找了?
生:找到重复了,就不在往下找了。
师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。
师:有失误的学生对自己的错误进行调整。
3、巩固练习。
找出下面各数的因数。
4、寻找一个数的因数的特点。
设计意图放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。
1、找一个数的倍数。
师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?
生:能!
师:试试看,找个小的可以吗?
生:行!
师:找一下3的倍数。30秒时间,把答案写在练习纸上。 ??
师:有什么问题吗?
生:老师,写不完。
师:为什么写不完?
生:有很多个!
师:那怎么才能全都表示出来呢?
生:可以加省略号。
师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?
师:谁能总结一下你是怎样找到的?
生:从小到大依次乘自然数。
师:你真会思考!
课件出示3的倍数。
2、找5、7的倍数。
师:我们再来练习找一下5的倍数。
生:5的倍数有:5、10、15、20、25??
生:7的倍数有:7、14、21、28、35??
师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?
生:能!
学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
设计意图在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。
认识“完美数”。
师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。
小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。
设计意图丰富学生的知识,陶冶学生的情操。
找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。
因数和倍数教学反思博客【第四篇】
本单元注意以下几个方面的教学,可以促进学生巩固基础知识,促进学生发展基本思维能力。
1.加强概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
本册新教材采用整数除法的表示形式教学,便于学生感知因数和倍数的本质意义。注意因数与倍数的相互依存的关系;质数、合数与因数的关系;偶数、奇数与2的倍数的关系等,形成概念链,依靠理解促进记忆!
2.注意培养学生的抽象概括与归纳推理能力
关注由从具体到抽象、由特殊到一般的概括、归纳过程,即从个别性知识推出一般性结论。如质数、合数:写出1——20各数的因数进行归纳推理,熟悉20以内的质数,制作100以内质数表。
3.教给学生养成“有序学习”的良好学习习惯。
4.加强解决问题的教与学,新教材增加了探索两数之和的奇偶性的纯数学问题,可以根据两数之和的奇偶性的规律推理出两数之差、两数之积的奇偶性,并渗透解决问题的策略。
5.拓展学生的知识面。如探究既是2的倍数又是5的倍数特征;4的倍数特征;6的倍数特征等,开拓视野,发展思维!