九年级数学上册教案【范例4篇】
【阅读指引】阿拉题库网友为您分享整理的“九年级数学上册教案【范例4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
九年级上册数学教学计划【第一篇】
培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度、顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、教学内容
本学期所教九年级数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。其中第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》已经由原四中教师在假期补课和开学的两周中上完,我从第二十四章《圆》上到第二十五章《概率初步》。因此我的教学任务实际就是后面这两章。
三、教学目标:
教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学 生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
北师大版九年级数学上册教案【第二篇】
一、基本情况:
本学期是初中学习的关键时期本学期我担任初三年级(29、30)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
二、指导思想:
初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教学内容:
本学期所教初三数学包括第一章 证明(二),第二章 一元二次方程,第三章 证明(三),第四章 视图与投影,第五章 反比例函数,第六章 频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率 则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点
本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》, 《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》, 《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
七、教学进度:
全学期约为10 周。安排如下:
内容 复习上学期内容 证明(二) 一元二次方程 证明(三) 视图与投影 反比例函数 频率与概率 綄合复习期末测试
时间 — — — — — — — — 期末考试及改卷
课时 6 13 12 11 8 9 10 15 5
周次 1 2 3 4-5 6 7 8 9 10
除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。
初三的上册数学教案【第三篇】
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。
2.通过复习 pin移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。
3.旋转的基本性质。
重点
旋转及对应点的有关概念及其应用。
难点
旋转的基本性质。
一、复习引入
(学生活动)请同学们完成下面各题。
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。
2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质。
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习 平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。
2.再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)
3.第1,2两题有什么共同特点呢?
共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
下面我们来运用这些概念来解决一些问题。
例1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A,B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。
(2)经过旋转,点A和点B分别移动到点E和点F的位置。
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
3.△ABC与△A′B′C′的形状和大小有什么关系?
老师点评:=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。
2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。
3.△ABC和△A′B′C′形状相同和大小相等,即全等。
综合以上的实验操作得出:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
例2 如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。
解:(1)连接CD;
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;
(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;
(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。
三、课堂小结
(学生总结,老师点评)
本节课应掌握:
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角;
3.旋转前、后的图形全等及其它们的应用。
四、作业布置
教材第62~63页 习题4,5,6.
数学九年级上教案【第四篇】
本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。
一。完成九年级下册的内容
1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。
2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。
3.加强学生对数学知识的认识方法,培养他们正确的学习方法。
4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力。与空间观念。
二。本学期在提高教学质量上采取的措施。
1.改进教学方法,采用启发式教学。
2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。
3.注意发展学生探索知识的能力,提高学生分析问题的能力。
4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。
5.鼓励合作学习,加强个别辅导,提高差生成绩。
三。教学具体安排。
1.第一周。平行四边形,矩形,菱形,正方形。
2.第二周。等腰梯形,中位线,反证法,以及复习题
3.第三周。数据分析与决策。
周。复习数与式
周。复习方程与不等式
周。复习函数
周。复习图形的认识
周。复习图形与变换
周。复习图形与坐标
周。复习概率与统计
周。复习课题学习
周。模拟考试与讲评
周。市检
周。重要知识点的再梳理
周。一些常见题的训练
周。做往年的中考题
周。考试方法和考试心理的辅导。