全等三角形【汇编4篇】
【阅读指引】阿拉文库网友为您分享整理的“全等三角形【汇编4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
全等三角形【第一篇】
全等三角形
课题:全等三角形
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、 找对应边、对应角以及全等三角形性质的应用
(1) 投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
全等三角形【第二篇】
一。说教材
全等三角形是八年级上册数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,也是进一步学习其它图形的基础之一。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:
(一)、教学目标:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题,要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,培养学生热爱科学、勇于创新的精神和多方位审视问题的能力与技巧。
(二)、说教学重点、难点
重点:全等三角形的概念、性质
难点:找对应顶点、对应边和对应角
二、说教法
1、引导发现法
在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。
2、谈话法
在师生对话、问答的过程中,用谈话的方式引导学生积极思考、探索,从而使学生在师生之间的交流、同学之间的交流中获得知识。
三、说学法
1、通过接触身边环境中的数学信息,激发学生的学习兴趣,产生自觉学习的内在动机,引导学生踏上自主学习之路。
2、看听结合,形成表象。
3、手脑结合,自主探究。
四、教学流程设计
1、情景导入
课前展示背景为悉尼歌剧院的倒影的图片(目的引起学生们的兴趣:全等三角形和歌剧院有什么联系?)
展示我国某地一幅风景图片,通过学生对湖光山色的描绘(描绘的倒影是景致之一),使学生的思维很快处于兴奋状态,这样,引导学生积极思维,让学生们认识到全等图形就在我们身边,以利于培养学生的探索性思维能力,激发学生的求知欲。
2、探求新知
展示国旗和福娃的等图片,提出问题(同时使学生感知,我们的祖国在体育、经济等诸多方面都已跻身与世界强国之列,为自己是一个中国人而感到自豪、骄傲)
3、通过观察图形变换让学生感受完全重合的图形有很多,从而得出全等形的概念。
4、通过演示让学生体会出全等三角形的概念和对应顶点、对应边、对应角的概念以及全等三角形的性质,并以图形变换的形式在练习指出对应顶点、对应边、对应角,由此去理解“对应顶点写在对应的位置上”的含义。
5、通过学生对全等三角形的观察,合作交流,从而得出找全等三角形的对应边、对应角的方法。
6、小结提高
通过今天的学习,同学们有哪些收获?(由学生自我完成知识的体系,纳入已有的知识体系,逐步形成解决问题的技能和思想)
7、拓展与延伸(合作交流完成探究题)
8、板书设计
全等三角形
1、全等三角形的概念
2、△abc≌△def
3、对应顶点、对应边。、对应角
4、全等三角形的性质
5、找对应元素的方法
2007年10月18日
《全等三角形的判定》教案【第三篇】
教学目标:
1、知识与技能:
1.三角形全等的条件:角边角、角角边。
2.三角形全等条件小结。
3.掌握三角形全等的“角边角”“角角边”条件。
4.能运用全等三角形的条件,解决简单的推理证明问题。
2、过程与方法:
1.经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程。
2.掌握三角形全等的“角边角”“角角边”条件。
3.能运用全等三角形的条件,解决简单的推理证明问题。
3、情感态度与价值观:
通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神
教学情景导入:
提出问题,创设情境
复习:
(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:
①定义;
②SSS;
③SAS.
2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
导入新课
[师]三角形中已知两角一边有几种可能?
[生]1.两角和它们的夹边。
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
学生活动:自己动手操作,然后与同伴交流,发现规律。
教师活动:检查指导,帮助有困难的同学。
活动结果展示:
以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等。
提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?
[生]能。
学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解。
[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长。
②画线段A′B′,使A′B′=AB.
③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.
④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′.
将△A′B′C′与△ABC重叠,发现两三角形全等。
[师]
于是我们发现规律:
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).
这又是一个判定三角形全等的条件。 [生]在一个三角形中两角确定,第三个角一定确定。我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?
[师]你提出的问题很好。温故而知新嘛,请同学们来验证这种想法。
教学过程设计:
如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
于是得规律:
两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).
[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
求证:AD=AE.
[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可。
学生写出证明过程。
证明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
[师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束。请同学们把三角形全等的判定方法做一个小结。
学生活动:自我回忆总结,然后小组讨论交流、补充。
有五种判定三角形全等的条件。
1.全等三角形的定义
2.边边边(SSS)
3.边角边(SAS)
4.角边角(ASA)
5.角角边(AAS)
推证两三角形全等,要学会联系思考其条件,找它们对应相等的'元素,这样有利于获得解题途径。
练习:图中的两个三角形全等吗?请说明理由。
答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.
课堂作业 1.如图,BO=OC,AO=DO,则△AOB与△DOC全等吗?
小亮的思考过程如下。
△AOB≌△DOC
2、已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C?′全等的是( )
=A′B′ AC=A′C′ BC=B′C′
B.∠A=∠A′ ∠B=∠B′ AC=A′C′
=A′B′ AC=A′C′ ∠A=∠A′
=A′B′ BC=B′C′ ∠C=∠C′
3、要说明△ABC和△A′B′C′全等,已知条件为AB=A′B′,∠A=∠A′,不需要的条件为( )
A.∠B=∠B′ B.∠C=∠C′; =A′C′ =B′C′
4、要说明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,则不需要的条件是( A.∠C=∠C′ =A′B′; =A′C′ =B′C′
5、两个三角形全等,那么下列说法错误的是( )
A.对应边上的三条高分别相等; B.对应边的三条中线分别相等
C.两个三角形的面积相等; D.两个三角形的任何线段相等
6、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.
《全等三角形的判定》教案【第四篇】
教学目标:
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等。
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力。
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:学会运用公理证明两个三角形全等。
教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图。
(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里一定要让学生动手操作。
(3)公理
启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
作用:是证明两个三角形全等的依据之一。
应用格式:
强调:
1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。
3、平面几何中常要证明角相等和线段相等,其证明常用方法:
证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。
证线段相等的`方法――中点定义;全等三角形的对应边相等;等式性质。
2、公理的应用
(1)讲解例1。学生分析完成,教师注重完成后的总结。
分析:(设问程序)
“SAS”的三个条件是什么?
已知条件给出了几个?
由图形可以得到几个条件?
解:(略)
(2)讲解例2
投影例2:
例2如图2,AE=CF,AD∥BC,AD=CB,
求证:
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书。教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论。(3)讲解例3(投影)
证明:(略)
学生分析思路,写出证明过程。
(投影展示学生的作业,教师点评)
(4)讲解例4(投影)
证明:(略)
学生口述过程。投影展示证明过程。
教师强调证明线段相等的几种常见方法。
(5)讲解例5(投影)
证明:(略)
学生思考、分析、讨论,教师巡视,适当参与讨论。
师生共同讨论后,让学生口述证明思路。
教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。
3、课堂小结:
(1)判定三角形全等的方法:SAS
(2)公理应用的书写格式
(3)证明线段、角相等常见的方法有哪些?
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a书面作业P56#6、7
b上交作业P57B组1
思考题:
板书设计:
探究活动