首页 > 学习资料 > 初中教案 >

七年级数学教案【汇编4篇】

网友发表时间 2415118

【阅读指引】阿拉题库网友为您分享整理的“七年级数学教案【汇编4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

七年级数学教案【第一篇】

学习目标:

1、学会用计算器进行有理数的除法运算。

2、掌握有理数的混合运算顺序。

3、通过探究、练习,养成良好的学习习惯

学习重点:有理数的混合运算

学习难点:运算顺序的确定与性质符号的处理

教学方法:观察、类比、对比、归纳

教学过程

一、学前准备

1、计算

1)(—)÷(—)2)2+(—8)÷2

二、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是?

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、18—6÷(—2)×2)11+(—22)—3×(—11)

3)(—)÷×(—100)

2、师生小结

四、回顾与反思

请你回顾本节课所学习的主要内容

3页

五、自我检测

1、选择题

1)若两个有理数的和与它们的积都是正数,则这两个数()

A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数

2)下列说法正确的是()

A.负数没有倒数B.正数的倒数比自身小

C.任何有理数都有倒数D.-1的倒数是-1

3)关于0,下列说法不正确的是()

有相反数有绝对值

有倒数是绝对值和相反数都相等的数

4)下列运算结果不一定为负数的是()

A.异号两数相乘B.异号两数相除

C.异号两数相加D.奇数个负因数的乘积

5)下列运算有错误的是()

A.÷(-3)=3×(-3)B.

(-2)=8+=(+2)+(-7)

6)下列运算正确的是()

A.;=-2;C.;D.(-2)÷(-4)=2

2、计算

1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

3)(—48)÷8—(—25)×(—6)4)

六、作业

1、P39第7题(4、5、7、8)、第8题

2、选做题:P39第10、11、12、1314、15题

七年级数学教案【第二篇】

《整式的加减》教案

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题:

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为()小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120()千米,因此,这段铁路全长为100t+120()千米①冻土地段与非冻土地段相差100t—120()千米②上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120()=100t+120t+120(-)=220t-60

七年级数学教案【第三篇】

教学内容

人教二年级下册教材第59~60页例1及第60页“做一做”。

内容简析

例1借助平均分物的操作活动,先进行恰好分完的操作活动,并用除法算式表示出来;再进行有剩余的操作活动,通过对比使学生体会其异同,帮助学生理解有剩余的情况,并用除法算式表示。通过与表内除法的对比,使学生理解余数及有余数的除法的含义。

教学目标

1、结合具体情境,经历认识余数的过程,理解有余数除法的意义。

2、通过主题图教学,让学生知道计算问题是从生活实际中产生,体会到生活中处处有数学。

3、培养学生的学习兴趣及初步的观察、概括能力。

教学重难点

理解余数及有余数除法的含义,能够准确求出余数。

教法与学法

1、本课时运用自主学习法,引导学生通过摆草莓的操作活动,使学生经历把物品平均分后有剩余的现象,抽象为有余数的除法的过程,理解有余数除法的含义。

2、本课时学生的学习主要是通过总结、归纳、抽象、概括等方法来学习。承前启后链

教学过程

一、情景创设,导入课题

故事描写法:周末小熊打算请2个好朋友到他家做客,加上小熊一共3人,他想请大家一起吃草莓。可是他打开冰箱一看,发现只有7个草莓,3人怎么分7个草莓呢?他很苦恼。聪明的小朋友们,你们知道他为什么苦恼吗?谁能来说一说?(不能把草莓平均分完)这就是我们今天要共同探究的内容——有余数的除法(板书)。品析:把教材中的情景进行了改编,增加了课堂的趣味,吸引了学生的注意力,为新知教学做了充分的准备。活动导入法:请同学们拿出10个小圆片。

①把10个圆片平均分成2份,每份有几个?

②把10个圆片平均分成3份,每份有几个?

(学生说法不一:有的说不能分,有的说分不出来)

这样的问题究竟应该怎样解决呢?这就是今天我们要学习的新内容,有余数的除法。(板书课题:有余数的除法)品析:活动导入,让学生动手操作,每个学生都参与其中并思考没有刚好分完怎么办?于是激发了学生强烈的求知欲望,随着老师的引导进入新知的学习中。

二、师生合作,探究新知

1、复习表内除法的意义。

平常我们分东西,有时候能正好平均分完,有时候不能正好分完,剩下的又不够再分。剩下不够再分的数就叫余数,这节课我们就一起来学习“有余数的除法”(出示课题)。

(1)课件出示6个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

(2)学生交流获取信息。

(3)利用学具实际操作。

(4)用算式表示操作的过程。课件出示6个草莓摆放的结果图:

(5)小组内说说6÷2=3(盘),这个算式表示的意思。品析:沟通操作过程、算式、语言表达之间的转换,使学生明白它们的意思是一样的,只是表达的形式不同。2、理解有余数除法的含义。

(1)在动手操作中感受平均分时会出现有剩余的情况。

①课件出示7个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

②学生利用学具操作。

③交流发现的问题:剩下一个草莓。

(2)在交流中确定表示平均分时有剩余的方法。

①学生用算式表示刚才摆的过程,教师巡视,选取典型案例。

②教师板书规范写法:

7÷2=3(盘)……1(个)

余数

③读作:7除以2等于3余1。写法:首先在等号的右面写商,然后点上6个小圆点再写上余数。

④交流算式表示的意思,7、3、2、1各表示什么?明确“1”是剩下的草莓数,我们把它叫余数。

(3)归纳总结,完善学生的认知结构。

①比较两次分草莓的相同点和不同点。②教师随学生的回答,用课件呈现下表。

分的物品几个一份分的结果算式表达

6个草莓每2个一盘分了3盘,正好分完6÷2=3(盘)

7个草莓每2个一盘分了3盘,还剩1个7÷2=3(盘)……1(个)

?品析:充分调动学生已有的经验,通过摆学具的直观方式让学生在与表内除法的对比中,理解余数及有余数除法的含义,给学生创设自主构建知识的空间。

三、反馈质疑,学有所得

在学习完例1的基础上,引领学生及时消化吸收,请学生同桌之间互相叙述余数和有余数除法的含义。然后教师提出质疑问题,引领学生在解决问题的过程中,学会系统整理。

质疑一:什么是余数?余数的单位名称是什么?

学生讨论后归纳:当平均分一些物品有剩余且不够再分的时候,剩余的数叫余数。余数的单位名称和被除数的单位名称相同。

质疑二:什么是有余数的除法?

学生讨论后总结:带有余数的除法就是有余数的除法。

四、课末小结,融会贯通

本节课中,你有什么收获?聪明的你能帮老师简单总结一下刚刚我们都学习了哪些内容吗?

“本节课中,我们明白了平均分后有剩余可以用有余数的除法算式表示。也知道余数的单位名称和被除数的单位名称一样。”

五、教海拾遗,反思提升

本节课,我使用故事导入,通过小熊分草莓招待客人,草莓有剩余的情况,唤醒学生的生活经验,

让他们初步感受到余数就在自己的身边,体会余数的意义。

打破原有教学模式,组织学生开展自主、合作、探究的学习活动。老师和学生是平等的对话关系,真正把主体地位还给学生。当出示问题时,先让学生自己独立尝试分一分,在小组内交流自己是怎样做的,怎样想的,这样给学生充分的思考空间,让每个学生都能在趣味中学习,享受到成功的喜悦。

七年级数学教案大全【第四篇】

教学目标:

1.借助数轴了解相反数的概念,知道互为相反数的位置关系。

2.给一个数,能求出它的相反数。

教学重点:理解相反数的意义。

教学难点:理解和掌握双重符号简化的规律。

教与学互动设计:

(一)创设情境,导入新课

活动 请一个学生到讲台前面对大家,向前走5步,向后走5步。

交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?

(二)合作交流,解读探究

1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出。

想一想 (1)上述各对数有什么特点?

(2)表示这四对数的点在数轴上有什么特点?

(3)你能够写出具有上述特点的n组数吗?

观察 像这样只有符号不同的两个数叫相反数。

互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点。即:我们把a的相反数记为-a,并且规定0的相反数就是零。

总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数。

2.在任意一个数前面添上“-”号,新的数就是原数的相反数。如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.

(三)应用迁移,巩固提高

例1填空

(1)-是_____的相反数,_____的相反数是-(+3),a的相反数是_____;a-b的相反数是_____,0的相反数是_____.

(2)正数的相反数是_____,负数的相反数是_____,_____的相反数是它本身。

例2 下列判断不正确的有(  )

①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点。

个  个  个  个

例3 化简下列各符号:

(1)-[-(-2)];  (2)+{-[-(+5)]};

(3)-{-{-…-(-6)}…}(共n个负号).

归纳 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负。

例4 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?

(四)总结反思,拓展升华

归纳  (1)相反数的概念及表示方法。

(2)相反数的代数意义和几何意义。

(3)符号的化简。

(五)课堂跟踪反馈

夯实基础

1.判断题

(1)-3是相反数。(  )

(2)-7和7是相反数。(  )

(3)-a的相反数是a,它们互为相反数。(  )

(4)符号不同的两个数互为相反数。(  )

2.分别写出下列各数的相反数,并把它们在数轴上表示出来。

1,-2,0,,-,3

3.若一个数的相反数不是正数,则这个数一定是(  )

A.正数 B.正数或0

C.负数 D.负数或0

4.一个数比它的相反数小,这个数是(  )

A.正数 B.负数

C.非负数 D.非正数

5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是_____

提升能力

6.若a与a-2互为相反数,则a的相反数是____

7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来。

相关推荐

热门文档

17 2415118