首页 > 工作范文 > 总结报告 >

初中数学研修工作总结优秀29篇

文秘发表时间 3636539

初中数学研修工作有效提升了教师专业素养,促进了教学方法创新,增强了学生学习兴趣,推动了教育质量的提升。下面是阿拉网友整理编辑的初中数学研修工作总结相关范文,供大家学习参考,喜欢就分享给朋友吧!

初中数学研修工作总结

初中数学研修工作总结 篇1

一、基本知识

一、数与代数

A、数与式:

1、有理数:①整数→正整数,0,负整数;

②分数→正分数,负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:带上符号进行正常运算。

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数

无理数:无限不循环小数叫无理数,例如:π=…

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根;0的平方根为0;负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:

A^M+A^N=A^(M+N)

(A^M)^N=A^(MN

(A/B)^N=A^N/B^N

除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式:A^2-B^2=(A+B)(A-B);

完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

解二元一次方程组的方法:代入消元法;加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程:ax^2+bx+c=0;

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a

,4ac-b^2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元二次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao

ta”,而△=b2-4ac,这里可以分为3种情况:

I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△B,则A+C>B+C;

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;

例如:如果A>B,则A-C>B-C;

在不等式中,如果乘以同一个正数,不等式符号不改向;

例如:如果A>B,则A*C>B*C(C>0);

在不等式中,如果乘以同一个负数,不等号改向;

例如:如果A>B,则A*C

如果不等式乘以0,那么不等号改为等号;

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘的数就不等于0,否则不等式不成立;

3、函数

变量:因变量Y,自变量X。

在用图像表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图像:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。

②正比例函数Y=KX的图像是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O时,则经234象限;

当K〈0,B〉0时,则经124象限;

当K〉0,B〈0时,则经134象限;

当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱,上下底面就是N边形。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。两点之间直线最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。即:60分为1度,60秒为1分。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,180。始边继续旋转,当他又和始边重合时,所成的角叫做周角,360。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上;

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的:角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角的角平分线就是到角两边距离相等的点的集合。

性质定理:角平分线上的点到该角两边的距离相等;

判定定理:到角的两边距离相等的点在该角的角平分线上;

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

——补角=180-角度。

4、同角或等角的余角相等——余角=90-角度。

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理

三角形两边的和大于第三边

16、推论

三角形两边的差小于第三边

17、三角形内角和定理:

三角形三个内角的和等于180°

18、推论1

直角三角形的两个锐角互余

19、推论2

三角形的一个外角等于和它不相邻的两个内角的和

20、推论3

三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(

ASA):有两角和它们的夹边对应相等的

两个三角形全等

24、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS):有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1

在角的平分线上的点到这个角的两边的距离相等

28、定理2

到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、推论1

等腰三角形顶角的平分线平分底边并且垂直于底边

31、推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;

32、推论3

等边三角形的各角都相等,并且每一个角都等于60°

33、等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

34、等腰三角形的性质定理

等腰三角形的两个底角相等

(即等边对等角)

35、推论1

三个角都相等的三角形是等边三角形

36、推论

有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理

线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1

关于某条直线对称的两个图形是全等形

43、定理

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3

两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理

直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理

如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理

四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理

n边形的内角的和等于(n-2)×180°

51、推论

任意多边的外角和等于360°

52、平行四边形性质定理1

平行四边形的对角相等

53、平行四边形性质定理2

平行四边形的对边相等

54、推论

夹在两条平行线间的平行线段相等

55、平行四边形性质定理3

平行四边形的对角线互相平分

56、平行四边形判定定理1

两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2

两组对边分别相等的四边

形是平行四边形

58、平行四边形判定定理3

对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4

一组对边平行相等的四边形是平行四边形

60、矩形性质定理1

矩形的四个角都是直角

61、矩形性质定理2

矩形的对角线相等

62、矩形判定定理1

有三个角是直角的四边形是矩形

63、矩形判定定理2

对角线相等的平行四边形是矩形

64、菱形性质定理1

菱形的四条边都相等

65、菱形性质定理2

菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1

四边都相等的四边形是菱形

68、菱形判定定理2

对角线互相垂直的平行四边形是菱形

69、正方形性质定理1

正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1

关于中心对称的.两个图形是全等的

72、定理2

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理

等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理

在同一底上的两个角相等的梯

形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理

如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1

经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2

经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

L=(a+b)÷2

S=L×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

如果

ad=bc,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理

三条平行线截两条直线,所得的对应线段成比例

87、推论

平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线,

所截得的三角形的三边与原三角形三边对应成比例

90、定理

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1

两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2

两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3

三边对应成比例,两三角形相似(SSS)

95、定理

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)

96、性质定理1

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2

相似三角形周长的比等于相似比

98、性质定理3

相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

(a<90)

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理

不在同一直线上的三点确定一个圆。

110、垂径定理

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2

圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理

一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2

半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3

如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线L和⊙O相交

0<=d<r

②直线L和⊙O相切

d=r

③直线L和⊙O相离

d>r

122、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理

圆的切线垂直于经过切点的半径

124、推论1

经过圆心且垂直于切线的直线必经过切点

125、推论2

经过切点且垂直于切线的直线必经过圆心

126、切线长定理

从圆外一点引圆的两条切线相交与一点,它们的切线长相等

,圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理

弦切角等于它所夹的弧对的圆周角?

129、推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论

如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?

133、推论

从圆外一点引圆的两条割线,这一点到每条

割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离

d>R+r

②两圆外切

d=R+r

③两圆相交

R-r<d<R+r(R>r)

④两圆内切

d=R-r(R>r)

⑤两圆内含

d<R-r(R>r)

136、定理

相交两圆的连心线垂直平分两圆的公共弦

137、定理

把圆平均分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138、定理

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理

正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积Sn=pn*rn/2

p表示正n边形的周长

142、正三角形面积√3a^2/4

a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144、弧长计算公式:L=n兀R/180——》L=nR

145、扇形面积公式:S扇形=n兀R^2/360=LR/2

146、内公切线长=d-(R-r)

外公切线长=d-(R+r)

初中数学研修工作总结 篇2

一、全新的研修,全新的体验。

20xx年xx月xx日,全省一百多名数学教师齐聚济南,开展为期10天的集中加分散的研修学习。 晚上的破冰活动,使每一个人都能感觉到,这100名教师都是全省初中数学界最优秀的代表。这其中有多位齐鲁名师、山东优秀教师、山东创新人物、全国优秀教师、全国课改实验先进教师,更不乏山东教学能手、山东省特级教师、省优质课一等奖获得者等等,很多教师不仅在数学上赫赫有名,也有很多班级管理方面的省级专家。后面的研修,也进一步证明了这是一个扎实务实的教师团队。

各级培训,越来越科学、务实,越来越需要耗费精力,这大家都是早有心理准备的。但本次培训中精力付出之大,还是远远超过了每一个人的预期。对于我来说,很渴望听到专家醍醐灌顶是的指点,也很希望学习别人先进的经验。但开始培训后,却没有和我想象的一样——听报告和观摩优秀课例,而是从一开始就在做任务培训。整个培训都是围绕着一个课例打磨展开和结束的。“三次备课、两轮打磨、4段视频制作、多个文本撰写”,从问题选择到问题澄清,从课例选择到基于研究主题的一次次策划,从教学设计的不断完善到课堂观察量表的细细斟酌,从课堂前台的关注到背后理论的不断深入,从任务分担到共同完成制作。一个不一样的研修,使我们感受到了很多从未有过的体验,给了我们许多不一样的思考和震撼。

二、艰巨的任务,共同的成果。

这次研修,是一次基于提高校本研修实效性的体验式的范例学习,这次研修,是一次基于任务完成的研修。29日上午,高研班举行了简短而又隆重的开班典礼。齐鲁师范学院副院长陈小言、山东省中小学师训干训中心主任毕诗文、副主任刘文华、省中小学教师远程研修项目执行主任蒋敦杰、山东省中小学教师远程研修初中项目主任梁承锋和省基础教育课程研究中心副主任李红婷教授等领导和专家出席了本次高研班开班仪式。开幕式上,专家和领导就明确的指出这次高级研修班的任务是为20xx年全省初中数学教师全员远程研修开发课例资源。

开幕式只有20分钟,很快就进入了任务培训状态。专家的报告大多是指向如何开展工作的,第一天培训就显示了任务的紧张。上午蒋教授的报告《教师研修转型与省骨干高级研修》到12点,下午首都师范大学王尚志教授《初中数学教学几个问题》到5:30,晚上梁承锋教授《20xx初中骨干教师高级研修目标任务与课例研究变式应用》到了10:30尽管专家们都在强调如何开展工作,如何重要和辛苦,我们还是没有进入状态。但王尚志教授的报告,让大家很兴奋,他探讨的问题很实在,和一线教师的思考很接近,我们大多数人都不是第一次听王教授的报告,但看得出这次报告还是给大家带来了很多思考和收益。而且后续的工作证明,王尚志教授的报告给大家的工作起了很好的指导作用。

第二天上午首席专家李红婷教授为大家作了题为《课例研究问题与研究任务——以“课例打磨”为载体的教学改进思路》的报告,李教授从教师培训方式的转型、专家型教师的成长路径、课例与课例设计、课例研究问题与研究问题、观课与评课等几个方面作了深入的解读。下午两位参加过课例研修教师的现身说法,让大家不但明白了基本流程和思路,也意识到了责任之大和任务之重。

伴随着两天的报告,是大家对关注问题的讨论和澄清。很快,我们六个组各自确定了自己的研究主题,并进行了去伪存真式的剥离和澄清,并撰写了各自的研修计划。首席专家李红婷教授的指导是非常重要的,而且贯穿任务全过程。李教授的指导具体、清楚,高屋建瓴而且不厌其烦,从早上到深夜,还处理着一些其他的工作,给大家带来了很大的感动。

更多的时间留给了以小组为单位的工作团队。我们小组由16位教师组成,有四位来自滨州,有三位来自东营,有九位来自烟台。其中由来自烟台市芝罘区教科研中心的林光老师任组长,由来自滨州市北镇中学实验初中部的邢成云老师和莱州市实验中学张延芳老师任指导老师,由来自东营市育才中学的刘江老师任组内专家,根据工作需要,组内又分为4个任务小组。

每一项任务都被分解为几个部分来讨论和撰写,然后再合成讨论,再经指导教师、组内专家把关后,再提交李教授审核,然后再审核定稿。课例打磨计划的制定,让大家完全进入了工作状态,也了解了理论研究、行动研究和载体呈现的重要性。授课任务由烟台三中分校的曲晓媛老师承担,她自我封闭了一天进行独立一备,其他人则对a视频脚本进行了细致的研讨,为便于在网络上呈现这个递进的过程,我们进行了录音和会议记录,想保持这个课例打磨的真实过程。在二备的过程中,大家各抒己见,充分讨论,很快达成了共识,二备很顺利,b脚本也很顺利完成了第一稿。

第一段集中研修,7天很快结束了。我们才发现自己的节奏是那么紧张。基本上是房间、餐厅和工作室,每天从早上到深夜。多数人连楼也没有走出去。第二阶段是分散研修和录课的时间。但每天大家还是第一时间上网交流和学习。尽管录课是在烟台,大家还是克服困难参加了实地的课堂观察。

12月21日,大家重聚济南,进行了观课交流,录制b视频和d视频,完成了网络记录和呈现任务,并撰写了课例学习导引等,最终一个完整的课例打磨资源,在大家的共同努力下顺利完成。回顾整个过程,我们不得不说,每一项工作成果无不都是大家共同智慧的结晶。每个小过程,我们组内都进行详细而明确的分工,而且这种分工特别重视彼此的互助性。每位教师都非常积极认真的完成各自的任务和协助任务。任务是艰巨的,但结果也是令人振奋的。

三、不同的体会,共同的收获。

(一)这次研修,给了大家太多的感慨。

教学设计、上课、听课、评课本是教师最经常的工作,却因没有明确的问题引领,没有客观的观察统计,没有必要的理性思考,没有更深一步的行动和理论跟进,使我们的校本研修摆脱不了低效的困境,也浪费了老师们的时间,也使得大家的水平和课堂教学质量得不到提高。聚焦问题,不仅需要理论的学习和思考,更需要真实、客观和科学的关注,更需要行动研究和逐步的'跟进践行,在坚决问题中,成长自己,促进学生。

(二)这次研修,给了大家太多的感动。

参加研修的教师,大多是学校里的中坚力量,身兼多职,但大家对待这项工作,无不尽心尽力,尤其在当讨论的时候,都愿意把自己的观点拿出来,与别人分享,阐述自己的理由。彼此真诚的交流,常让人有无声处闻惊雷的感觉。与会的工作人员,也都尽可能的为别人服务。各位专家,尤其是李红婷教授更是耐心指导,精益求精。可以说,研修中,每一个人感动着别人的同时,也被别人感动着。雅斯贝尔斯说:“教育就是一朵云推动另一朵云,一棵树摇动另一棵树,一个灵魂唤醒另一个灵魂。”研修也正是这样。我们有理由相信,教育战线上不乏执着的追梦人,不乏具有高尚情怀和追求的教育工作者。

(三)这次研修,给了大家太多的收获。

虽然整个研修,都是围绕任务展开的。但服务他人的同时,更成就的是自己。在课例打磨的过程中,每一位教师都有自己的收获。有的开阔了思路,有的提升了理论,有的净化了心灵。同时,也结交了很多业内同行。其实,同伴的交流是最大的财富。有一种收获,可以穿透时空,长久的留在记忆里,那就是精神的成长和彼此的感动。

(四)这次研修,给了大家更多的思考。

日常教学研究,应该聚焦于教学有关的各类现实存在的问题,应该注意反复开放和聚焦,在解决和研究中,不断提出新的问题和实际的行动跟进研究。

我们感觉到,广大的一线教师都是有强烈的教育责任感、使命感和教育情怀的,对教育教学的追求是大家共同的心愿。通过本次高研班研修,我们认识到其实大道至简,道不远人。

初中数学研修工作总结 篇3

作为一名初中数学教研组组长,我肩负着整个学科的发展方向。在本学期开始时,我制定了数学教研计划,以确保数学教学和教研工作能够顺利进行。由于今年初中部的教学班级增多,教学任务也加重了。作为一门主学科,数学的教学责任重大。因此,我们坚定不移地深化了 “杜郎口”和“洋思”教学改革,并将每周的周一下午第一节课定为固定的数学教研时间。在教研活动中,我们对各年级的本周教学内容及重点难点进行了把关,并对各种公开课和教研活动进行了集体教研和通告。我们努力完成各种教学任务,确保数学教学工作不会拖累学校的其他工作,并有效地避免了教学事故的发生。

本学期,由于初一数学课本及教学内容发生了较大变化,并且有两位新聘任的教师加入我们的团队。因此,我们将初一的教学内容作为本学期数学教研的重点。我们对这两位教师进行了长期的追踪听课和指导,共听评课20余节。这使得两位教师都取得了长足的进步,他们的教学成绩也得到了显著提高。在期末考试中,初一的一、二两个班的数学成绩取得了较好的成绩,而三、四两个班的成绩仍需加强。除此之外,其他年级的数学成绩也都取得了优异的成绩。

作为一班的班主任,我肩负着今年中考的.重任以及学校的期望。由于这一届学生是我刚接手的班级,我对学生的情况并不熟悉。因此,我在学期初花了大约一个月的时间,逐步了解、认识和熟悉了全班学生。接下来,我进行了一系列改革。首先,我精心挑选了班级干部,并鼓励他们在班级中开展工作。同时,我加强了对他们的指导,让他们尽快成熟,有力地进行班级管理。当班级干部逐渐成熟时,我们实行了议会制管理,并对班级内的事物进行了量化管理。此外,我对教师的教学进行了可行性分析,以确保教学能够有利于师生的发展。我们还每月举行一次选举,让有责任心的同学有更大的发展空间。

开展好主题班会是我们的另一个重点工作。作为初四学生,学习是最重要的。在主题班会中,我们注重加强对科学用脑的思想教育,以及对学生个人心理调适、科学休息法、记忆法、科学身体锻炼、营养搭配和科学用脑的最新成果等方面的指导。我们的工作都以真正有利于学生学习为主,力争在明年的中考中取得较理想的成绩。

初中数学研修工作总结 篇4

把一元二次方程化成ax2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。

公式法

公式:x=[-b±√(b2-4ac)]/2a

当Δ=b2-4ac>0时,求根公式为x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(两个不相等的实数根)

当Δ=b2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)

当Δ=b2-4ac<0时,求根公式为x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a

例3.用公式法解方程 2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2, b=-8,c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= (4±√6)/2

∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.

大家不知道的是两个复数根在初中数学的学习中理解为无实数根。

初中数学研修工作总结 篇5

顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。

中位线

中位线概念

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。

注意:

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

初中数学研修工作总结 篇6

波利亚强调:“数学科学具有两个侧面,已经形成的数学是一门系统的演绎科学;而正在形成中的数学则是一门实验性的归纳科学”。对于数学科学具有两个侧面的含义的理解,是我们正确把握数学教材的编写意图和课程理念关键。一本数学教材对教师而言则是一门系统的演绎科学,对正在学习过程中的学生而言则是一门实验性的归纳科学。结合初中数学教材的具体内容,对教材编写的演绎归纳二重性进行分析,以利于教师在数学教学中更好的利用教材设计的归纳演绎空间,培养学生的归纳演绎能力,从而培养学生的数学意识和数学创造能力。

一、利用教材的实验归纳空间培养学生的数学创新意识

新课程为了实现在教学中培养学生的数学意识的教学目标,为学生实验归纳留下了空间和机会,教师要充分利用好这些空间和机会让学生发挥主观能动性,在数学化的过程中培养学生的数学意识和创新意识。例如在有理数部分,教材给出一个思考题:“我们以前学过加法的交换律、结合律,在有理数的加法中它们还适用吗?计算30+(-20),(-20)+30。两次所得的和相同吗?换几个加数再试一试。你发现有什么规律吗?让学生总结:有理数的加法中,两个数相加,交换加数的位置,和不变。然后让学生看书上的结论发现与自己总结的相一致,于是学生就得到了成功的体验,从而增强了学生学好数学的信心,激发了学生学习数学的兴趣,这位学生的后续学习奠定了坚实的基础,因为信心是成功的一半,兴趣是最好的老师!

教材的编写意图就是为学生得到这一结论而设置的实验归纳空间。弗赖登塔尔也强调:“学生通过自己的努力得到的结论和创造是教育内容的一部分”。为了培养学生的数学意识和创新意识,必须充分利用好教材的实验归纳空间。书中这样的归纳空间很多,有理数乘法的交换律、结合律等都是这样处理的。为了有利于学生理解教材中的一些数学结论,教材从具体到抽象的编排体系,为学生的实验归纳创造了机会。例如在等式性质部分,书中让学生观察天平的的两边都加(或减)同样的量,天平还保持平衡。让学生通过天平平衡事实来理解等式的性质。这样的编排体系为学生掌握和理解等式的`性质提供了归纳实验机会。数学上的实验往往是思想中的实验。教材在一元一次方程部分,在通过布列方程解决实际问题的最后部分,书中归纳出用一元一次方程分析和解决实际问题的基本过程框图,这样做是为了让学生掌握数学思想方法。关于解一元一次方程的步骤,书中也是让学生通过具体的解方程的操作过程中归纳出来的。

二、用新课程标准的理念处理初中数学教材内容

在数学新课程理念中,要求学生能够用数学的眼光和角度观察、提出和解决问题,即培养学生的数学意识和数学创新意识。培养学生的合情推理能力和论证推理能力。这些教学理念和目标,要结合教材的归纳演绎二重性来实现。对于传统教材中有些内容进行了删减,例如一元二次方程与根的系数关系、直角三角形的射影定理等内容在新教材中不再以教材正文内容的形式出现,但是在习题中却涉及到了这些内容。这样的编排意图同样是为学生留下的归纳演绎空间。

在教学中对这部分内容的处理应该以研究性学习的形式布置学生认真完成,再归纳到知识系统之中,从而使学生学习的知识结构不断完善,更加演绎系统,让学生经历创新和发现,从而体验数学创新的快乐和成功,更重要的是增强学生的自信心并形成数学创新意识。这就是教材编排时在为培养学生的数学创新意识而创设的归纳演绎空间。学生在对某一本书的数学内容学习的过程中,学生的经历是不断试验、不断归纳的过程,但是,在学生对于某一本书的数学内容学习结束时,在学生的脑海中应该是系统的演绎的知识结构,结构上应该是与传统教材的演绎性相一致的数学。

初中数学研修工作总结 篇7

初中数学长方形的中考知识点集锦

长方形也就是我们所说的矩形,是基础的平面图形。

长方形

有一个角是直角的平行四边形叫做长方形 (rectangle)。又叫矩形。

长方形长与宽的定义:

第一种意见:长方形长的那条边叫长,短的那条边叫宽。

第二种意见:和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的,不能绝对的说“长比宽长”,但习惯地讲,长的为长,短的为宽。

长方形的性质

①两条对角线相等;

②两条对角线互相平分;

③两组对边分别平行;

④两组对边分别相等 ;

⑤四个角都是直角;

⑥有2条对称轴(正方形有4条)。

以上的内容是长方形的性质及定义,请大家做好笔记了。

初中数学研修工作总结 篇8

1.分式及其基本性质:分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的值不变。

2.分式的运算:

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

初中数学研修工作总结 篇9

学好数学,并不是一两天的事情。我认为,最关键的是要培养起你对它的兴趣。因为热管如果你讨厌它,不感兴趣,甚至头疼、害怕,那你很难在数学上努力了。像这样,对数学没兴趣、不努力,就很难学好它了。

当然,光有兴趣还不够。还得努力去学好它。最起码得背熟书上已学过的概念、公式,有时间最好预习一下新课,使第二天上新课掌握得更快、更多、更好。上课简单记些笔记,把要点记下来,晚上回家多复习,总结一下,温故知新。对不理解的题目,要问老师,问懂为止。当有比老师更简单的解题方法,可以提出,和老师、同学一起讨论。不要担心自己可能会错而不敢提出,有问题提出,是个锻炼的好机会。老师是启发我们的人,并不是“拐杖”,关键得靠自己努力、多动脑。可以平时多做一些课外较灵活的题。有时一道难题怎么也做不出来,想了几天做出来了,就会有一种成功的喜悦。

仔细、认真也不可缺少。解答每一题都要认真仔细,思想集中。一张数学试卷,大部分题都需计算。计算就要仔细,有些题有陷阱,必须得仔细。卷子做完了得仔细检查。做题时得根据最后问题找出关键条件,认真理解。一般来说,每句话、每个条件都有作用,应好好利用来解答题目。

第一部分:什么样的人数学容易学好

一、智力背景广阔的人

教育家苏霍姆林斯基说过,“必须识记的材料越复杂,必须保持在记忆里的概括、结论、规则越多,学习过程的‘智力背景’就应当越广阔。”换句话说,学生要能牢固地识记、理解并灵活运用公式、规则、结论等,他就必须阅读和思考过许多并不需要识记的材料。

调查过程中我们发现,数学成绩优秀的大学生往往拥有广阔的智力背景,喜欢阅读一些文学名著、传记历史,也喜欢阅读一些数学方面的书,比如《速算秘诀》《中学生数理化》以及图书馆、书店里的趣味智力书籍。此外推荐和数学相关的书目:《好玩的数学系列》《训练思考能力的数学书》《故事中的数学》。

除建立广阔智力背景外,阅读对提高审题能力和学习兴趣也大有帮助。

二、喜欢“偷懒”的人

你相信吗?喜欢“偷懒”的人数学往往学得好,他们的个性特征也往往是崇尚简单。为什么?因为这一类人遇事都会这样想:“有没有更简便的方法啊?”经常这样思考,就会逐渐具备一眼抓住重点和关键环节,一眼就看到最便捷的解题办法的能力。

三、生活经验丰富的人

学好数学需要过的一关是情景理解。数学是解决实际问题的学科,没有生活经验,往往难以将数学知识转化为解题方法。调查过程中我们发现,数学学习好的人有以下生活经验:

1、经常跟长辈一起体验、甚至帮助长辈处理一些家务事,比如卖东西、买东西、逢年过节算账目等等。

2、有实践的兴趣。休闲时间,很多人都会去打球、逛街,而我们调查的这部分大学生更愿意去做一些有实践意义的事情。有一位大学生就提到,自己上初中的时候,曾和一个好友一起用自行车和卷尺丈量过新校区的面积。

第二部分:怎样学数学

一、恰当的学习方法和学习习惯

数学是多功能学科,逻辑性、系统性都很强。学习掌握数学知识,应该有比较科学的学习方法。方法得当,可以“功夫不负有心人”事半功倍;方法不对,就会“费力不讨好”,事倍功半。学习有效果,就会越学越有兴趣;学习成绩总是提不高,就会慢慢丧失学习信心。是否掌握较为科学的学习方法,是学习成败的关键。根据整理的优秀大学生的数学学习经验精髓,我们认为,较为科学的学习方法和习惯,主要体现为下述五个基本环节。

1、做好课前预习,掌握听课主动权。凡事预则立,不预则废。

2、专心听讲,做好课堂笔记。听课要提前进入状态。课前准备的好坏,直接影响听课的`效果。

3、及时复习,把知识转化为技能。复习是学习过程的重要环节。复习要有计划,既要及时复习当天功课,又要及时进行阶段复习。

4、认真完成作业,形成技能技巧,提高分析解决问题的能力。教育权威杨乐院士在回答中学生如何学好数学的问题时,就是很简短的三句话:一是在理解的基础上多实践,二是在理解的基础上多积累,三是循序渐进。这里所说的实践,就是做题,就是完成作业。

5、及时进行小结,把所学知识条理化、系统化。学完一个课题或是一个章节,就要及时进行小结。每一环节的落实程度如何,都直接关系到下一环节的进展和效果。一定要先预习后听讲,先复习后作业,经常进行阶段小结。

每天放学回家,应该先复习当天功课,次完成当天作业,后预习第二天功课。这三件事,一件也不能少,否则就不能保证第二天有高质量的听课效果。

在平时的学习中,老师都要求学生备用一个错题本,便于学生课下复习使用,但平时教师仅仅强调学生课下复习浏览自己的错题本,却很少要求看别人的错题本。其实,经常借阅同学们的错题本很有必要。借阅时注意:

第一借阅比自己水平高的同学的错题本,这样便于丰富、拓宽自己的知识领域。第二,看比自己水平较低的同学的错题本,便于经常给自己敲响警钟。借阅同时,要做好自己的读书笔记,便于自己平时参阅。在开始阶段至少一周要有两次重现阅读,过两周后可一周,这样循序渐进。此方法可运用于其他各个学科。

二、良好的学习动机和学习兴趣

学习动机是推动学生学习的直接动力,能使学生积极主动地进行学习。影响学生的学习动机和学习兴趣是多方面的,本次调查中提到的有:老师和家长鼓励性的话语,通过一些小技巧从小培养数学学习兴趣,如数学顺口溜、趣味数学问题、数学讲故事。自己用数学知识解决实际问题后或取得成绩后,获得的成就感和荣誉感,如计算出了书本的面积、轮胎的周长、获得竞赛奖项。

华罗庚说:“有了兴趣就会乐此不疲,好之不倦,因之也就会挤时间来学习了。”

三、坚强的意志

有了正确的学习动机,并不意味着学生就能顺利完成整个学习过程,在学习数学的过程中,他们还会遇到许多大大小小的困难。而使学生树立坚定的信心,勇敢地面对困难,继而战胜困难,获得知识和技能,则需要坚强的意志。不少学生学习成绩不佳并不是智力或其它方面有问题,而是他们缺乏克服困难的坚强意志,遇到困难就“打退堂鼓”,所以学习成绩总上不去。培养学生顽强的意志和坚强的毅力应从提高学生学习的自觉性和坚韧性两方面着手。自觉性是指学生对学习数学的目的和意义有深刻的认识,从而能自觉地进行刻苦学习。当学生认识到当前学习与祖国未来和自己的未来的关系,明确自己所担负的责任时,才能排除外界干扰与诱惑,使学习成为自觉的行动。学习目的越明确,对学习意义认识越清楚,学习的自觉性也就越强。坚韧性是指在完成学习任务时,坚持不懈地克服困难的品质。学生在学习的过程中,总会遇到一些困难,而满怀信心地迎接困难,奋力拼搏战胜困难,就是意志的坚韧性的表现。这是一种十分可贵的品质。有了这种品质,在学习遇到困难或挫折时,才不会灰心丧气;在取得好成绩时,也不会骄傲自满,而是善于总结经验教训,探索学习的规律和方法,奋勇前进。这种意志的品质,对培养创造型人才是非常必要的。

四、自信心与勤奋

自信心与勤奋也是对数学学习有着重要影响的两种非智力因素。树立自信心,相信自己通过努力能够学好数学,这对于后进学生更为重要。因为如果学生对学习丧失了信心,那么它就失去了战胜困难的精神力量。数学知识、技能的获得,数学能力的提高,离不开学生的勤奋与努力。所以培养学生勤奋好学、刻苦钻研精神是非常重要的。数学家张广厚说:“在学习数学的道路上没有任何捷径可走,更不能投机取巧,只有勤奋地学习,持之以恒,才会得到优秀的成绩。”可见勤奋能弥补学生某些智力的不足,促进学生数学能力的发展。

五、积极向上的心态

情感是人类对客观事物的一种态度与心理体验。在我们的研究中发现,凡是数学成绩始终保持良好的大学生,在小学和中学时代,都经常与老师进行感情交流,建立良好的师生关系,并且能和同学不断的交流学习中遇到的问题,不断切磋,分享经验,共同进步。

这里我举一个例子:李铭数学成绩相对较好,同学们有数学问题请教他的时候,他总是耐心帮助帮助同学,通过这个过程,他不但帮助了同学,而且自己对数学知识的理解也更深刻了。“你有一个苹果,我有一个苹果,交换一下,仍是一个苹果;我有一种思想,你有一种思想,交换一下,将成为两种思想。”而李铭的同桌,自认为自己的学习非常好,怕别人学习到自己的某方面知识和能力,记笔记都要用手挡着,怕被别人看到,所以他的知识只能是自己的和老师传递到他这里的,很快就落后了李铭很多。

通过上面的分析我们发现,数学学习好,其实并不难。这与孩子成长的家庭、社会、学校有着密不可分的关系。建议家长多给孩子看一些有益的书籍和视频,多让孩子参加一些有益的活动,给孩子提供一个良好环境。

初中数学研修工作总结 篇10

一、师德方面:加强修养,塑造师德

我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。

二、教学方面:虚心求教,强化自我

担任两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。

首先是从教学理论和教学知识上。我不但自己订阅了三四种教学杂志进行教学参考,而且还借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。

其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。

最后我做到“不耻下问”教学互长。从另一个角度来说,学生也是老师的“教师”。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。

三、考勤纪律方面

我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。

四、业务进修方面

随着新课程改革对教师业务能力要求的提高,本人在教学之余,还挤时间自学本科和积极学习各类现代教育技术。

五、不足之处

反思一年多的工作,自己在一些细节工作上还存在着不足,特别是学生对作业本的保管、潜能生作业的书写缺乏指导和严格要求。在今后的`工作中,应充分注重工作中的细节,尽量使自己的工作做得扎实。

总之,在这学期的教学工作中收获了很多,提高了很多,同时也感受到了自己的不足。在今后的工作中,应不断提高自己的业务能力、充实自己的业务理论水平、提高自己在学生管理方面的能力、注重细节工作,一如既往的兢兢业业,勤奋钻研,尽量使自己的各项工作做得更扎实、更完善、更有效、更实在。

初中数学研修工作总结 篇11

时间单位换算

1世纪=100年1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天,闰年2月29天

平年全年365天,闰年全年366天

1日=24小时1时=60分

1分=60秒1时=3600秒

重量单位换算

1吨=1000千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

长度单位换算

1千米=1000米1米=10分米

1分米=10厘米1米=100厘米

1厘米=10毫米

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣0注:方程有两个不等的实根

b2-4ac抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h

正棱锥侧面积S=1/2c*h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h

扩展阅读:

初中数学研修工作总结 篇12

一、角的定义

“静态”概念:有公共端点的两条射线组成的图形叫做角。

“动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于0小于直角的角叫做锐角。

二、角的换算:1周角=2平角=4直角=360°;

1平角=2直角=180°;

1直角=90°;

1度=60分=3600秒(即:1°=60′=3600″);

1分=60秒(即:1′=60″).

三、余角、补角的概念和性质:

概念:如果两个角的和是一个平角,那么这两个角叫做互为补角。

如果两个角的和是一个直角,那么这两个角叫做互为余角。

说明:互补、互余是指两个角的数量关系,没有位置关系。

性质:同角(或等角)的余角相等;

同角(或等角)的补角相等。

四、角的比较方法:

角的大小比较,有两种方法:

(1)度量法(利用量角器);

(2)叠合法(利用圆规和直尺)。

五、角平分线:从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的平分线。

常见考法

(1)考查与时钟有关的问题;(2)角的计算与度量。

误区提醒

角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。

【典型例题】(20xx云南曲靖)从3时到6时,钟表的时针旋转角的度数是

【答案】3时到6时,时针旋转的是一个周角的1/4,故是90度,本题选C.

初中数学研修工作总结 篇13

我是一名普普通通的中学数学教师,我觉得作为一个好老师,首先要爱他们,包容他们,我相信好学生是夸出来的,我不是神,只是一个普通的人,或许在工作中也有这样那样的失误,但我会努力去关爱他们。对如何有效教学形成了独特的见解。

1、培养积极探究习惯,发展求异思维能力。

在教学中,构建数感的理解、体会,要引导学生仁者见仁,智者见智,大胆,各抒己见。在思考辩论中,教师穿针引线,巧妙点拨,以促进学生在激烈的争辩中,在思维的碰撞中,得到语言的升华和灵性的开发。教师应因势利导,让学生对问题充分思考后,学生根据已有的经验,知识的积累等发表不同的见解,对有分歧的问题进行辩论。

通过辩论,让学生进一步认识了自然,懂得了知识无穷的,再博学的人也会有所不知,体会学习是无止境的道理。这样的课,课堂气氛很活跃,其间,开放的课堂教学给了学生更多的自主学习空间,教师也毫不吝惜地让学生去思考,争辩,真正让学生在学习中体验到了自我价值。这一环节的设计,充分让学生表述自己对数学的理解和感悟,使学生理解和表达,输入和输出相辅相成,真正为学生的学习提供了广阔的舞台。

2、注意新课导入新颖。

“兴趣是最好的老师”。在教学中,我十分注重培养和激发学生的学习兴趣。譬如,在导入新课,让学生一上课就能置身于一种轻松和谐的环境氛围中,而又不知不觉地学数学。我们要根据不同的课型,设计不同的导入方式。可以用多媒体展示课文的画面让学生进入情景;也可用讲述故事的方式导入,采用激发兴趣、设计悬念……引发设计,比起简单的讲述更能激发学生的灵性,开启学生学习之门。

虽然在工作中我们取得了一些成绩,但是这离我们所追求的目标还有很长的路要走。集体备课、研修活动培养了教师理解和把握教材的能力,唤醒了教师推进新课程的意识,中学数学研修正在逐渐由“经验型”向“反思型”和“研究型”群体发展。在我们看来,课改与教研是一个永恒不变的主题,我们还要把教后记只注重对具体实践结果的粗浅回顾,提高到对实践本身的深入反思,使“研”更有深度;同时有效地利用数学教师的博客,与同行交流思想,为学生提供服务!

初中数学研修工作总结 篇14

知识点总结

1.定义:两组对边分别平行的四边形叫平行四边形

2.平行四边形的性质

(1)平行四边形的对边平行且相等;

(2)平行四边形的邻角互补,对角相等;

(3)平行四边形的对角线互相平分;

3.平行四边形的判定

平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:

第一类:与四边形的对边有关

(1)两组对边分别平行的四边形是平行四边形;

(2)两组对边分别相等的四边形是平行四边形;

(3)一组对边平行且相等的四边形是平行四边形;

第二类:与四边形的对角有关

(4)两组对角分别相等的'四边形是平行四边形;

第三类:与四边形的对角线有关

(5)对角线互相平分的四边形是平行四边形

常见考法

(1)利用平行四边形的性质,求角度、线段长、周长;

(2)求平行四边形某边的取值范围;

(3)考查一些综合计算问题;

(4)利用平行四边形性质证明角相等、线段相等和直线平行;

(5)利用判定定理证明四边形是平行四边形。

误区提醒

(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;

(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。

初中数学研修工作总结 篇15

1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2.分式有意义的条件:分母不等于0。

3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)

5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

6.分式的四则运算:

1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c

2)异分母分式加减法则:异分母的.分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd

3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd

4)分式的除法法则:

(1)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc

(2)除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c

7.分式方程的意义:分母中含有未知数的方程叫做分式方程.

8.分式方程的解法:

①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);

②按解整式方程的步骤求出未知数的值;

③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

初中数学研修工作总结 篇16

20xx年12月17到19号,我区数学课堂大比武活动在祝阳二中举行,3天的比赛时间里,18位数学老师为我们展示了18节精彩纷呈的数学课堂。师生之间和谐默契的配合,科学合理的教学流程,良好的教学效果,无不体现着我区初中数学教师较高的专业水平。虽然是赛课,但老师们的课堂少了花架子,实实在在的专注于创设适合学生认知规律的学习背景,新课程的理念已深深的植入我区数学教师的内心,学生为课堂主体得到了很好的落实。3天的听课,使我收获很大,先将个人感想总结如下:

3天的教学内容如下:

12月17号:八年级上册6。1第二课时不等式的基本性质12月18号:八年级上册6。2第一课时不等式的解和解集12月19号:八年级上册6。2第二课时一元一次不等式及解法我想以课堂流程为主线,从以下几个方面进行总结:

一、学习目标:

使用学案的老师都将学习目标放在了学案的第一环节,在讲课过程中有3位老师一开始就出示学习目标,有5位老师放在导课之后出示目标,有2位老师放在课堂小结前出示学习目标,有八位老师没有提及学习目标。出示目标的老师方式也不一样,有的老师让学生读一遍,有的老师自己读完,有的老师象征性的突出这一环节,马上带过。从效果看,出示目标对提高课堂效益没有太大意义,尤其是放在课堂的开始出示目标,学生对本节课的数学概念、方法,思想并不熟悉,学生读过之后就会忘记,学生也不会时刻想着学习目标指导自己学习,时间白白浪费。从设计目标内容看,多数老师设计学习目标科学合理,但也存在一些问题:一是目标表述笼统,如“培养学生自主探索与合作交流的能力”,要细化为:会与同伴交流解题感想。如“提高学生分析问题解决问题的能力,培养学生的学习兴趣”,这是教学目标,不是学习目标,那节课不都有这样的目标,成万能目标了;二是学习目标中不能出现“培养学生合情推理能力”这样的目标,谁培养,是老师,老师是主语,其实是教学目标与学习目标混了。

二、课堂导入

参加讲课的老师使用了三种导课方式:

1、复习导课。复习等式的基本性质得到不等式的基本性质;复习方程的解得到不等式的解;复习一元一次方程的定义得到一元一次不等式的定义;复习一元一次方程的解法步骤得到一元一次不等式的解法步骤。

2、探究法导课。仿照等式的基本性质2,把不等式的两边同乘以或除以同一个数,让学生个人选择一些数代入研究,发现有三种情况:不等号方向不变(两边同乘以或除以一个正数);不等号变成等号(两边同乘以零);不等号方向改变(两边同乘以或除以一个负数)。实验得到了结论。

3、创设情境导课。情景导航中的飞机最多还能装载多少顶帐篷;面包车限载7人;高速路限速100迈;至少答对几道题。贴近生活激发兴趣。

第一天6位老师都从回顾等式的基本性质入手,引入不等式的基本性质的探究,为相似知识之间的类比做好铺垫,导课方式合情合理,效果不错。

第二天学习不等式的解及解集,教材设计了有关直升飞机运载灾物资的情景,有两位老师使用了这个情景导入新课;汶口一中的范义坚老师以乘坐的面包车来参加赛课,面包车的载客量和在行程中看到的限速牌的情景导入新课;李新刚老师设计了购物情景导入新课;十四中的赵培义老师设计了竞赛得分的情景导入新课;一位老师没有设计导课环节,直接给出自学指导,学生自学。

第三天21中的高凤老师设计了一个关于读书的情景导入课题,另有3位老师从回顾一元一次方程入手,引入课题;两位老师没有设计课堂导入环节,直接出示探究指导,让学生自主学习新知识。

从效果看,课堂的开始设计情景导入环节,这是师生交流的开始,尤其是赛课,面对的是陌生的学生,设计一个学生熟悉或是感兴趣的情景,对于提升学生的学习热情,拉近师生之间的距离,活跃课堂气氛,激发学生的求知欲望很有效果。但是在创设情景时,不要形式上的贴近现实,如导课时有教师“如果我们学校捐赠10顶帐篷,这架飞机能一次运走吗?”,看上去联系我们学校了,贴近我们了,岂不知我们学校哪有帐篷,又扯远了

三、探究新知环节

参加讲课的老师非常重视学生的自主学习、合作探究的学习方式,设计了非常生动的探究情景,比较合理的自学指导,指导学生如何小组探究、如何反馈,如何评价。此环节充分体现了我区初中教师对新课改理念的理解,老师们已把传统的填鸭式教学模式彻底抛弃,新的探究式教学已深入人心。实验中学的董海涛老师在教授不等式的基本性质时,首先回顾等式的基本性质,然后出示一组不等式,学生类比等式的基本性质得到了不等式的基本性质1,然后董老师大胆让学生猜想不等式是否还有其他性质,学生类比猜想“不等式的两边同时乘以或除以一个不为零的数或整式,不等号的方向不变”这一看似合理但有错误的结论。董老师告诉学生,猜想不一定正确,猜想后还需有科学合理的推理、论证才可以判断它是否正确。(这一步让学生大胆去猜想非常智慧,为学生自然类比出性质提供了舞台,当然是在学生不能提前看书的基础上),董老师鼓励学生想办法验证自己的猜想。学生运用代入不同数值的方法发现,同乘正数和负数是不同的,乘以负数,不等号的方向要改变,所以对于乘法,要分类讨论,学生得到了不等式2和3。这种设计,符合知识的发展,生成规律,即让学生自主掌握了知识,又让学生学会了很重要的解决问题的方法(对比一些老师的让学生自主学习,那数学的“过程”自然也就淹没了,学生不经历这一过程,得到的知识浅多了)。十五中的邱玉荣老师在教授不等式的解法两个例题时,通过较为简单的例题1让学生感知类比方程的解法可以求不等式的解集,邱老师放手让学生自己试着解例题2,相当多的学生能成功的得到不等式的正确解集,且步骤合理。邱老师让学生通过板演展示,学生评价等方式完善方法和步骤,达到让所有学生掌握的目的。这种方式,能让中等以上的学生通过自主学习,感受到成功的乐趣,也体现了邱老师分层教学的理念。

出现的问题

1、不等式基本性质的探究过程大体分几种情况:

(1)性质1、2、3一块得出;

(2)性质1、2、3分别得出;

(3)性质1、2一块得出,然后探究性质3;

(4)性质1先得出,然后探究性质2、3一块得出;

通过课堂观察,第四种情况符合知识发生发展规律,符合学生认识规律,自然生成,其他均有人为硬性的痕迹,是按照成人的思维来设计,不够自然流畅。

另外,性质1的探究过程没有按>0,<0研究,性质2为什么没按呢?再就是缺乏对“等于零”的情形的研究,分析不全面。

再有,教师安排学生自学课本和学案,一定时间后让学生回答性质1、2、3,就算是对性质的探究过程了。让学生看课本总结性质1、2、3,流于形式,没有探究的味,假探究,学生看课本总结那不是鼓励学生背课本、读原文,自己总结么?教师的引导有如何体现??2、合作交流的时机不当

一上课,出示引例后问“直升飞机最多能装载多少顶帐篷?”,此问题一出,立即让学生进行交流讨论,是时机吗?有必要吗?教师要思考“什么时候让学生合作交流?”

3、有的老师对小组合作只作为一个形式运用,没有考虑实际价值。如没有设置探究解决的问题或设置的问题很随便。一位老师让学生在数轴上画不等式x<2的解集时,问学生2在数轴化实点还是虚点,学生集体回答画虚点,老师又说“同学们讨论一下为什么画虚点?”这样的讨论有点多余,因为这是前一节课学生熟练掌握的内容;有的老师在学生合作学习开始前没有交代好方法和注意事项,小组合作学习开始后不停地补充,这样就很容易打断学生的思路。有的老师没有给足够的时间合作学习,很短的时间后就让学生反馈或自己进行总结,这样就达不到小组合作解决问题的目的。有的老师在反馈小组合作学习的成果时,只选择组长来说,这样不能调动所有学生的学习热情;

四、训练巩固环节所有讲课的老师都特别重视训练巩固,精心设计了形式多样,紧扣当节课所学知识点,易于掌握重点和突破难点的训练题组。老师让学生通过自主练习,暴露出存在的问题,然后通过形式丰富的反馈加以纠正。

这一环节存在的问题有:

1、有的老师设计的题组难度跨度大,没有充分考虑学生的认知水,讲解例题之前最好先做一些基础性的题目,为例题的顺利解决做一个台阶;2、教师讲评前要仔细审查学生板演的情况

如学生板书“x—5<—3”,把“—”号看做乘号“●”了,但按此乘号“●”做得很好,教师讲评时不问青红皂白,直接批死,造成“冤假错案”,其实该生是平时学习不错的优秀生,致使该学生看错了,而且看错的原因也是教师的课件不清楚所致。

3、在反馈环节,老师指名课代表、班长、组长等,因为他们大都是优等生,样本不具有代表性,不能反映出学生存在的问题;学生板演时,老师不敢让学生暴露错误,学生一旦出错,老师马上对其订正,错误没能呈献给所有学生,具有代表性的错误不能有效订正。让学生在数轴上表示解集时,应让学生自己画数轴,自己标数字,教师一般不要提前画好数轴,只等学生来完成剩下的任务

4、拓展不当,如拓展“已知x≥m且x为正数,确定实数m的范围。”,与本节课时内容关联性不强。

5、在数轴上表示不等式的解集时,有教师在数轴与所标线内涂上阴影,意指阴影部分是解集,与课本不符。

五、课堂小结

在课堂小结环节,老师们大都提出“本节课你有什么收获”或“本节课你学到了什么”这样的问题,然后让学生总结,学生大都总结出一节课所学到的知识点,以及在做题中出现的错误进行总结。有两位老师的总结涉及到了当堂课的数学方法和思想。老师们注重了所授知识的概括、归纳及总结,对解决问题的方法,对所学知识的应用及价值的总结有所淡化,也没有涉及到对学生情感、学习态度和存在问题的总结。

六、学案

讲课的18位教师,有16位老师使用了学案,但学案的设计质量参差不齐,有的学案个个环节齐全,重点突出学习指导,训练题组有创新,当堂检测设计科学合理。印象最深的是道朗一中的李新刚老师设计的学案,征得李老师的同意后将他设计的学案附在后面,请大家参考。

学案存在的问题有:

1、1、有的学案没有标注课题,显得不完整

2、2、有的老师将学案设计成训练题,没有体现上课的过程

3、3、有的老师设计的学案设计成了教案的`形式,出现教学目标、教学过程等词语,学案设计不规范

4、4、有的学案内容空洞,没有实用性,老师发给学生学案后,没有应用。

七、关于达标检测

18位老师都设计了当堂达标这一环节,达标检测题进行了精心设计,题型包括选择、填空、解答与计算,题型丰富。特别是增加了选择题的比重,中考选择题分值占50%,老师们着眼中考,从这里看出我区数学老师丰富的教学经验。

存在问题:

有的老师设计的题量太多,有一位老师设计了11道题目;有个别老师设计的题目难度偏大;有的老师因课堂时间安排不合理,课堂检测没有完成,导致没有反馈和订正,有很多老师因前面的环节不紧凑,导致拖堂,有的拖堂达到近10分钟。

八、课件

讲课的18位老师都使用了教学课件,老师的的课件制作的各有特色,能极大地提高课堂效益,多数老师在使用过程中得心应手,说明我区的数学课堂课件的使用已非常普及。

存在问题:

个别老师操作不熟练,不能及时翻页、跳页;过早地呈现后面的内容,退不回去了;对比度不强,许多文字、符号看不清。

初中数学研修工作总结 篇17

通过几个月的网上研修学习,我接触到了专家学者们的教育新理念,学习了不少优秀教师的课堂教学设计,同时还与班内的一线教师们进行了充分的交流,收获颇多。可以说这次网上研修内容很深刻,研修的效果将影响深远。作为一个农村中学教师的我深深感到学习的重要性,在今后的教学中,我将立足于自己的本职工作,加强理论学习,转变教育教学观念,积极实践新课改,铺设好自己的专业化发展之路。我个人感觉在这次学习中收获很多,盘点收获主要有以下几个方面:

首先,教师要尊重、关心、信任学生。

因为良好的师生关系是学好数学的前提。尊重、关心、信任学生,和学生友好相处是营造和谐课堂氛围的基础,在教学活动中,教师与学生在心理上形成一种稳定,持续的关系,不仅是在知识、能力上的交往,也是情感心灵上的沟通、交流,首要的是教师要对学生关心、信任、尊重。

其次,教师要立足课堂,在实践中提升自身价值。

课堂是教师体现自身价值的主阵地,在今后的教学中,我将努力将所学的新课程理念应用到课堂教学实践中,立足“用活新老教材,实践新理念。”力求让我的数学教学更具特色,形成独具风格的教学模式,更好地体现素质教育的要求,提高数学教学质量。

第三、在教学中不失时机地培养学生的自学能力。

引导学生克服心理障碍,树立自信心,在学生取得点滴成绩时予以表扬,让他们觉得自己能行。有了自信心,他们对难题就有了挑战性,这样他们才会积极主动进行学习。为了培养学生的自学能力,需要帮助学生发展自学技能。课堂上我有意识对学生的进行合作训练。在小组合作过程中,教师要扮演小组角色,承担小组任务,同时有目的地在小组活动中示范合作技巧和协调教学活动,确保小组专注于学习目标,使小组成员在教师言传身教带领下逐步学会合作的技能。

另外,我感触最深的一点是作为传道授业的老师,只有不断的更新自己的知识,不断提高自身素质,不断的完善自己,才能教好学生。如果自身散漫,怎能要求学生认真?要提高我们的自身素质,就要求我们自身不断网上研修,不断开辟新教法。摒弃旧的教学方法,把先进的教学模式引入课堂,自觉地走进新课程。

作为一个具有30多年教年的老教师,我见惯了“老师教,学生学;老师讲,学生听”这种固定的教学模式,这种教学模式限制了学生的发展,压抑了学生学习的热情,不能焕发学生的潜能。通过网上研修学习,“合作学习”、“主动探究”、“师生互动”、“生生互动”等新型的教学模式为课堂注入了生机与活力。通过网上研修我认识到:这些新的教学模式给学生更加自由的学习空间,体现了以学生为本的理念,老师要自觉地把新的教学模式引入课堂,改变课堂的面貌,使课堂气氛活跃;教学民主,学生的学习热情才会高涨;师生关系才能融洽。才能充分体现素质教育的根本目标。这也是新课改向我们提出的课题。

通过这次网上研修,我懂得了网络的.重要性;让我懂得了如何运用网络资源。在教学设计过程中,我依据教育教学原理、科学的方法,研究、探索教和学系统中各要素之间的本质联系,然后对教学内容、教学媒体、教学策略和教学评价等要素进行具体计划。另外,我在教学中,鼓励学生收集身边有关的数学问题,在课堂上开辟一片互相交流、互相讨论关注问题的天地。让学生学得更轻松也让学生能够更多的参与到课堂之中得到更多的操作技巧。同时,课堂上我重视德育的渗透工作,让学生在学习数学知识的同时,陶冶他们爱自然、爱科学、爱祖国、爱劳动的思想情操,树立关心生态环境等的思想,促进学生全面发展和个性培养。通过努力,我根据数学学科的特点,迎合学生好奇心强的特性,大胆地进行课堂改革。把课堂与生活拉近,以形式多样的探究活动为主,让数学课的范围扩大到生活的方方面面。通过这样的资料互动形式把课堂教学与社会生活联系起来,体现数学来源于社会又应用于社会的一面。以此实现素质教育的根本目标。

初中数学研修工作总结 篇18

时间飞逝,回望开学初的计划,深感“做事的过程就是结果,努力能带动效率。”这学期我们数学教研组的工作在三个备课组长及全组数学教师的努力下基本完成了工作任务。

现总结如下:

一、突出研课特色,以公开课为平台,提升教研组教师学习能力通过学校各项活动,我们教师课堂教学水平有很大提高,三个备课组长以学生学段不同,科学合理地进行教学工作,我们强化数学教研组建设,积极发挥教研组备课组的团队合作力量,走了教研组教学研究特色化,便于提高我们教师教学水平,要求每位教师认真钻研教材,探讨教法,并积极地落实到自己的'教学中。通过骨干教师带动青年教师观课议课评课,提升教师对教学各项能力,并议课中,及时发现一些“共同”问题,紧锣密鼓地开展研究,并探讨解决教学共性问题以及教师教学个人问题,一定程度上有效的提高了教师相互学习能力。

二、多种培训及教学研修,提升教研组教师素养学校创造机会提高教师的业务学习能力。选派优秀教师积极参加外出跟岗培训,回来后上好汇报课,实现资源共享。联系温州市送教下乡活动,县常规培训活动,市县中考复习说明培训,多个角度,多个平台,进行了教师业务和素养培训,效果显著。

三、丰富活动,提高数学教研组综合能力整合教学活动,展开备课组特点的个性行动研究,在教研中,我们阶段交流活动,解决研究过程遇到的问题。九年级进行二轮专题复习研究,由王大团老师做公开课,并在课题组员和全体数学组展开研讨,提高了二轮专题复习研究的有效性。七八年级对如何处理培优和教学相宜联系,平时更针对性的,更有效的进行教学整合,使培优和教学双赢。这学期各年段积极组织学生参加生活中的数学的初赛与复赛,并获得多个一、二、三等奖奖项,成果喜人。

四、发挥备课组长领导力,加强集体备课通过教研组平台,要求备课组长细化、优化备课组各项常规工作,发挥教师的积极性,有计划地开展教研组下达各项数学教学活动。以教研组为单位进行教学研究,发挥备课组的优势,把教研组作为一个有力的团体,打团队仗,让每一位教师在团队中发挥自己的潜能,凝聚智慧,创造智慧。

五、教研工作的不足之处教研组内教师多,改变提升教研组教师教学水平,还是有很大距离,改变教师教学方式和教学观念也有困难,教研组教师平均年龄较大,在专业上开始进入了疲倦期,如何激发老师们的工作激情,快速度过工作倦怠期,进入新一轮工作激情期,这是我们教研组面临的一个问题。经验型的老教师过多,也给我们带来了很大工作压力,从教研活动的公开课到试卷命题等等,活动热情和投入严重不足,每次活动的执行力都会阻碍重重,因此各备课组长压力极大。

最后,感谢大家这几年在工作上的大力支持,我们教研组的工作,是见证大家的共同成长,让我们收获各自的精彩,同时也成就我们作为数学大组的集体荣誉!再次,感谢有你们!

价方式,让学生的个性得到自由健康的发展,从而形成肯定的自我意识。

3、加强教学研究,充分发挥教科研活动对常规教学的辅助功能。一是把集体备课、听课、评课落到实处,加强教师间的交流与合作,真正实现脑力资源的共享。二是加强学习,参加各级新课程培训和远程教育培训等各种学习活动,进一步更新教育理念。坚持阅读每期《中史参》、《历史教学》和《历史研究》等权威学术期刊,了解最新史学动态,并将这些思路和方法及时运用到教学中去,大大提高了教育思想水平和教学水平。三是撰写了《对新课标下历史课堂教学的认识》、《如何发挥中学历史教学的素质教育功能》等教学和学习心得。针对教辅市场良莠不齐的现状,我用一年时间编写了一套教辅用书,由黄河出版社发行,得到同行的广泛好评。

4、担任班主任工作期间,我建立了一套行之有效的管理方法,教育学生树立远大理想,培养学生集体观念和合作进取意识,用发展的眼光看待学生,以平常心态对待后进生,对学生晓之以理、动之以情,因势利导,变消极因素为积极因素,从而使学生形成了积极的人生态度,树立了正确的人生价值观。

三、一蓑烟雨任平生——继续我的执着与勤奋。

一分春华,一分秋实。付出心血与汗水,也收获着充实和沉甸甸的情感,我所教班级的学生,学习兴趣浓厚,成绩突出。教学之路仍在脚下延伸,作为教学之路上的蹉跎前行者,不求夏花之灿烂,但求秋叶之静美。在以后的工作中,我将保持自己的勤奋和执着,把自己的工作做的更好。

初中数学研修工作总结 篇19

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。2.因式分解,必须进行到每一个多项式因式不能再分解为止。(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)=(m+n)(a+b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的.分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.(九)含有字母系数的一元一次方程1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。1.分式2.二次根式3.三角形4.一次函数5.四边形6.相似7.简单概率统计

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最后结果,如果是分式则应该是最简分式.(九)含有字母系数的一元一次方程1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

初中数学研修工作总结 篇20

诱导公式的本质

所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

常用的诱导公式

公式一: 设为任意角,终边相同的角的同一三角函数的值相等:

sin(2k)=sin kz

cos(2k)=cos kz

tan(2k)=tan kz

cot(2k)=cot kz

公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:

sin=-sin

cos=-cos

tan=tan

cot=cot

公式三: 任意角与 -的三角函数值之间的关系:

sin(-)=-sin

cos(-)=cos

tan(-)=-tan

cot(-)=-cot

公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:

sin=sin

cos=-cos

tan=-tan

cot=-cot

初中数学研修工作总结 篇21

1、一元一次方程根的情况

△=b2-4ac

当△>0时,一元二次方程有2个不相等的实数根;

当△=0时,一元二次方程有2个相同的实数根;

当△<0时,一元二次方程没有实数根

2、平行四边形的性质:

①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:

①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:

①N边形的内角和等于(N-2)180度

②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

初中数学研修工作总结 篇22

正棱锥是棱锥的一种,具备着所有棱锥的性质和定理。

正棱锥

如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

正棱锥的性质

(1)正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);

(2)正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;

(3)正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;

(4)正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch‘。

特别地,侧棱与底面边长相等的正三棱锥叫做正四面体。

初中数学研修工作总结 篇23

一、课堂上坚持忆、清、练相结合

1.忆。回忆是复习课不可缺少的环节,教师要引导学生有意识地看课题回忆所学知识,看课本回忆单元知识。回忆时,可先粗后细,并进行讨论,在此基础上再进行复述,以系统地回忆已学知识。

2.清。就是梳理、总结、归纳,理清知识线索、解题思路,弄清各种题型的解题方法、技巧的过程。教师要引导学生根据回忆,进行点——线——面的总结,做到从一点或一题串一线、连一面,特别要注意知识间纵向、横向的联系和比较,构建知识脉络。要引导学生学会归纳、总结,在理清知识脉络时,可以根据复习内容的多少,分项、分步进行整理,将所学知识前后贯通,并进行拓展。

3.练。对以前的学习内容在进行回忆、整理、分析的基础上,选取典型题型和适量的题目进行当堂训练和检测,以熟悉和巩固解题的方法和技巧。

二、归纳强化,提高正确率

1.常见题型,要熟能生巧。要引导学生经过适量、适当的强化训练以达到熟能生巧、触类旁通的程度。每练习一题就应是一次学习和巩固这类题型的解题方法、技巧的机会和过程,以达到一看到这类题型,马上就能联想到与这类题型相关的知识及解题的常用方法、技巧。

2.注重归纳、总结知识体系。归纳和总结知识体系不只是简单的机械重复、死记硬背,而是要深化认识、拓展知识,从本质上发现数学知识之间的联系,从而加以分类、整理,逐渐形成一个条理化、网络化的有机知识体系,真正实现由厚到薄、由少到多的'过程。

3.掌握数学思想方法。如,函数与方程、数形结合、分类、归纳等数学思想方法在复习时,教师要引导学生加以归纳,强化训练。强化规律、纠正解题中的不良习惯,掌握正确的答题程序、方法和技巧等,只有反复练习才能强化记忆,从而提高准确率。要引导学生认真总结过去做题时失误的地方,解答常见题型时,要严谨细致;解答中档题时,要联系已做过的题型,坚持不懈;解答较难题时,要理论联系实际,考虑拓展的数学知识,调整心态,不要轻易放弃。解题之前的分析很重要,学习数学不仅要学会怎么做,更要掌握数学思想,教师要引导学生把解题之前的思路分析作为重点,引导学生逐渐学会分析、判断和决策,以提高解题能力。

三、坚持做到“四化”

1.使概念习题化。数学概念的复习不是简单的重复,而是要建立概念之间的有机联系,不能死记硬背,要会解决实际问题。例如,初中数学中涉及到“代数式”、“整式”、“单项式”、“多项式”、 “二次根式”、“最简二次根式”等概念,教师要针对这些概念,要求学生记忆一些题型,以引导学生弄清这些概念及区别。

2.使知识系统化。复习的目的在于巩固知识,使其系统化,以减轻学习压力,同时零散的知识又不会被遗忘。教师可引导学生通过列表或画结构图来理清知识。例如,初中所学方程的知识庞杂,分布零散,可把所学主要知识进行归纳,形成“方程知识结构图”。

初中数学研修工作总结 篇24

知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、、9/10、π(圆周率)。

非负数

非负数大于或等于0。

非负数中含有有理数和无理数。

非负数的和或积仍是非负数。

非负数的和为零,则每个非负数必等于零。

非负数的积为零,则至少有一个非负数为零。

非负数的绝对值等于本身。

常见的非负数

实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。

常见表现形式

非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。

知识归纳:任何一个非负数乘以-1都会得到一个非正数。

初中数学研修工作总结 篇25

通过培训的学习,使我认识到当前课改的目的和意义,也使自己对课改有了深刻的认识,也大大提高了自己对本学科的理论素养。现将这次培训体会总结如下:

一、业务学习

加强学习,提高思想认识,树立新的理念。坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。

二、新课改

通过学习新的《课程标准》,使自己逐步领会到“一切为了人的发展”的教学理念。树立

了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的新型师生关系,使尊重学生人格,尊重学生观点,承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果。

三、教学研究

教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的.教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:

(一)发挥教师为主导的作用

1 、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。

2 、注重课堂教学效果。针对初三年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。

3 、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,自己执教二节公开课,尤其本学期,自己执教的公开课,学校领导和教师们给我提出了不少宝贵的建议,使我明确了今后讲课的方向和以后数学课该怎么教和怎么讲。

4 、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

四、工作中存在的问题

1 、教材挖掘不深入。

2 、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3 、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导。

4 、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。 5 、教学反思不够。

五、今后努力的方向

1 、加强学习,学习新课标下新的教学思想。

2 、学习新课标,挖掘教材,进一步把握知识点和考点。

3 、多听课,学习同科目教师先进的教学方法的教学理念。

4 、加强转差培优力度。

5 、加强教学反思,加大教学投入。

初中数学研修工作总结 篇26

一直以来,在试卷讲评课的上法上总存在着一些困惑。例如,试卷上的错题因人而异,如何上能照顾到全体,将每位学生出错的问题解决?通过这次培训我认识到,我们没有足够的时间面面俱到的讲解,在一定的时间内想面面俱到,那么每个题目也只是蜻蜓点水,一节课下来真正沉淀到头脑中的知识寥寥无几。今后的试卷讲评课我打算按照下面的思路来上,请刘老师多批评指正。

一、考试之后教师要做好测试分析,并充分备课。

通过测试分析,首先,弄清学生集中出错的题目,找出学生的共性问题,并针对这些共性的问题展开备课。备课要备学生出错的原因,试卷讲评时如何对这些问题讲解与完善。其次,弄清每位学生的得分,对于成绩波动大的同学通过谈话等方式及时了解情况并帮助解决困难。

二、下发试卷,学生自己纠错。

给学生自己纠错的机会,将能自己改正或通过小组合作改正的题目在试卷讲评前改过来。

三、订正答案,进一步改错。

给学生标准答案,在答案的引导下,学生进一步寻找解题思路,完善解题步骤,查找丢分原因,加深对知识的理解。

四、重点题、错题重点讲解。

经过两轮的改错之后学生存留下的问题已经很少,教师试卷讲评时就要解决这些遗留问题、重点题、错题。对于这些问题可以通过分类讲解、同类知识串讲、变式训练、一题多解、多个知识点上串下联等方式讲透。经过寻根问底,可使学生对不明确的知识点加深理解,再认识,然后巩固练习。这个过程下来同时可复习到多个知识点,建立知识体系,拓展学生思维。

五、方法总结。

围绕一个知识点讲解之后,要让学生总结解题思想、方法,掌握答题技巧。需要时可让学生简记。

六、解答疑问。

通过学生提出疑问,大家共同解答,完善学生对知识的认识。

近几年教基础年级,所以感觉上章节复习课较多,专题复习课很少。我们学校的章节复习课与刘老师的“出示问题,引出知识”是一致的。通过问题的解决实现知识点的复习。

通过听两位韩老师的课我感觉有几处大的收获:

一、要想实现高效课堂,教师首先高效备课。从两位老师对题目的选取上能看到她们备课的用心。值得学习。

二、充分放手给学生,让学生思考、解决问题、总结方法。教师适时点拨。

三、重要知识点、思想、方法及时简记。“好脑子不如烂笔头”,的确如此。根据艾宾浩斯的遗忘规律,一节课下来学到的知识点总在慢慢遗忘,如果课堂上不把关键点记录下来的话,回过头来复习时头脑中的知识漏洞难以得到修缮。

通过这次学习我感觉收获很大,希望刘老师多组织类似活动帮助年轻教师成长。同时对于这次培训的肤浅认识希望刘老师多批评指正。谢谢!

初中数学研修工作总结 篇27

通过这段时间的培训学习,使我深刻认识到学习的必要性和重要性。使我认识到当前课改的目的和意义,也使自己对课改有了深刻的认识,也大大提高了自己对本学科的理论素养。现将这次培训体会总结如下:

一、通过研修使我的教学观念得到进一步的更新

有机会来参加这次培训,有机会来充实和完善自己,我自豪,我荣幸。但更多感到的是责任、是压力!回首这次的培训,真是内容丰富,形式多样,效果明显。培训中有各级教育专家的专题报告,有一线教师的专题讲座,有学员围绕专题进行的各种行动学习,还有我回校后的教育教学实践。这次的培训学习,对我既有观念上的洗礼,也有理论上的提高,既有知识上的积淀,也有教学技艺的增长。这是收获丰厚的一次培训,也是促进我教学上不断成长的一次培训。

二、拓宽了视野,开阔了眼界

观看学习视频使我领略到了教育专家和名师的风采,专家和名师的课程深入浅出,鲜活生动的教学案例让我们感到就在自己身边。案例背后的思考与解读,更是让我们深受启发、大开眼界,引起深层次的反思。

远程研修平台上的同行们都在积极努力地学习,看着他们发表文章和评论,我得到了很多的启发和实用性的建议和意见,我为自身的浅薄与不足感到羞愧,认识到加强学习的重要性与紧迫性。远程研修的过程中,我一直抱着向其他老师学习的态度参与,学习他们的经验,结合自己的教学来思考,反思自己的教学。

三、提高能力,完善自我

网上的专业学科学习和听取同行们优秀的示范课使我从根本上改变了我原先的传统教学模式,更给我带来了新的教学观念、教学方式和教学理念。这使我对以往在教学中的困惑豁然开朗,教学思路灵活了,对自己的课堂教学也有了新的目标和方向:首先在课堂的'设计上一定要力求新颖,讲求实效性,不能为了图热闹,活动多多而没有实质内容;教师的语言要有亲和力,要和学生站在同一高度,甚至蹲下身来看学生,充分尊重学生;在课堂上,教师只起一个引导的作用,不可以在焦急之中代替学生去解决问题,要尊重学生的主体地位;教师可以设置问题引导学生,但是不能全靠问题来牵引学生,让学生跟着老师走等。在以后的教学工作中,我也会以高质量的课堂要求自己,不断提高教学能力,完善自我。四、反思不足,努力改进

通过远程研修,使我学到了很多东西,这对我来说是一个极大的提高。同时,我也重新审视自我,更清醒地认识到自己知识的匮乏、浅陋,也看清了过去的自己:安于现状、自满自足,缺乏终身学习的意识,工作中容易被俗念束缚,惰性大,缺少有价值的尝试探索;我深深地感到自己在工作中存在着许多不足,因此,我决定在以后的工作中努力改进:

1、借助远程研修,多学习、多交流,使自己的知识面不断扩大,使自己的业务水平更上一层楼,以更好的适应新课程教学和时代的挑战。

2、教学的艺术不在于传授本领而在于激励、唤醒、鼓舞。新课标的指导下,教什么、教多少、如何教等问题得到了进一步明确。教学的宗旨是要激发学生的学习兴趣。

3、认真备课、上课,合理设计学案、教案,精心设计练习题,有效地进行分层教学,使所有的学生都不掉队,让他们成为真正的智慧型人才。

4、教学方法要灵活多样,在教学中创设生动的知识情景,促进学生知识、能力、智力、情感意志获得尽可能大的发展,提高学习效能。在教学中应该坚持以科学的态度和方法,努力减轻学生负担,尽量让学生消除畏难情绪。让学生明白一个事实,那就是课堂上只要积极大胆的参与了各个教学活动,就是最大的成功和可喜的进步。

5、“爱孩子是教师的天职”,爱是教育的源泉,爱学生就可以给学生一个健康的思想,良好的学习心态,所以,我们都应关心爱护每一位学生,使他们在我们的呵护下茁壮成长。

6、教师每时每刻都要学习,所以,我将在今后的工作之余加强教育理论和教学方法的学习和研究,多读一些有价值的教育书籍,努力提高自己的整体素质。一份耕耘,一分收获,相信在以后的工作中,我会更努力,在学习和思考并没有停止。在今后的工作中努力改善自身,勇敢迎接更多挑战。

初中数学研修工作总结 篇28

参加初中数学远程培训二个多月时间了,通过这段培训,我受益匪浅,感受很多。下面就是我的.点滴体会:

一.对新教材有了初步了解

学习了义务教育新课标的理念和课例解读后,我对于未曾变动的旧的知识点,考纲上有所变化的做到了心中有数。对于新增内容,哪些是中考必考内容,哪些是选讲内容,对于不同的内容应该分别讲解到什么程度,也更明确了。这样才能做到面对新教材中的新内容不急不躁、从容不迫,不至于面对新问题产生陌生感和紧张感。通过学习,使我清楚地认识到初中数学新课程的内容是由哪些模块组成的,各模块又是由哪些知识点组成的,以及各知识点之间又有怎样的联系与区别。专家们所提供的专业分析对我们理解教材,把握教材有着非常重要而又深远的意义。对于必修课程必须讲深讲透,对于部分选学内容,应视学校和学生的具体情况而定。

二.对课堂教学设计、教学案例的编写方面的内容有了提高。

培训活动中,自己通过视频观看学习了“案例导入”、“专家讲座”、“互动讨论”、“课例作业”等内容,使自己在教学设计、教学案例以及课堂教学等方面有了进一步的提升和加强,特别是在课堂教学设计,令人豁然开朗。通过视频观看学习了《有序数对》和《图形的旋转》,感觉很有收获。如以往听课从未记录过讲课者教学过程各个环节的时间分配,听课时只注意了讲课者的知识传授情况,而没注意欣赏、品析讲课者的教学追求、洞察其教学的理论依据等。特别是听了专家讲座后,自己才知道还有很多不足。自己今后将认真按专家的指点开展教学活动。

三、教学实战能力得到加强

本次培训充分关注培训教师的实际需要,不仅传授了现代教学技术和手段,在大的纬度上帮助教师构建理论体系,同时更关注新课程背景下课堂教学深层问题。专家向我们讲授了“计算机教学手段应用”“中学教师标准解读”“教学技术及应用”“新课标解读”等,先进的教学理念及其别具一格的教学风格使本人在观摩、思考、碰撞中得到提高。整个培训活动从实际到理论,再由理论到实际,循序渐进,降低了学习的难度,提高了学习的实效。

四、通过培训学习,使我清楚地认识到整体把握初中数学新课程的重要性及其常用方法。

整体把握初中数学新课程不仅可以使我们清楚地认识到初中数学的主要脉络,而且可以使我们站在更高层次上面对初中数学新课程。整体把握初中数学新课程不仅可以提高教师自身的素质,也有助于培养学生的数学素养。只有让学生具备良好的数学素养才能使他们更好地适应社会的发展与进步。与学生的总结、交流能促进我们产生更多更好的授课方式、方法,产生更多更新的科学思维模式。这对于我们提高课堂教学质量具有非常现实而深远的意义。

总之,此次培训活动,使自己的教育教学观念、教学行为方法、专业化水平,教育教学理论均有了很大的提升。今后,自己充分将所学、所悟、所感的内容应用到教学实践中去,做新时期的合格的初中数学教师。

初中数学研修工作总结 篇29

三角和的公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

倍角公式

tan2A = 2tanA/(1-tan2 A)

Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)3;

cos3A = 4(cosA)3 -3cosA

tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

三角函数特殊值

α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

α=°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

α=°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

三角函数记忆顺口溜

1三角函数记忆口诀

“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

2符号判断口诀

全,S,T,C,正。这五个字口诀的`意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

“ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

3三角函数顺口溜

三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

相关推荐

热门文档

35 3636539