首页 > 工作范文 > 总结报告 >

数学培训总结【8篇】

网友发表时间 3300979

【引导】优质的范文往往能节省您大量的写作时间,让您的办公学习游刃有余,以下是由阿拉题库网友分享的“数学培训总结【8篇】”优秀范例,供您学习参考所有,轻松搞定再也不用加班熬夜了,希望下面文档对您有所帮助,喜欢就下载吧。

数学培训总结【第一篇】

今年,全县组织中小学教师远程网络培训,我怀揣着对教育事业的追求和对学生负责的态度参加此次培训,这次培训活动的内容丰富、形式多样、安排紧凑、组织严密。专家们的讲座切合我们教学的实际,有宏观的阐述也有微观的剖析,有理论的提升,更有课例的充实。这种培训我们喜欢,朴实、生动、学有所用。学习期间,认真聆听各位专家的讲座和报告,做好学习笔记;积极参加讨论,结合自己教学实际进行总结和反思。通过远程学习,收获颇丰,对小学数学本质和自身数学素养等方面的认识都得到很大提升。现就这次培训作如下总结:

整个培训分七个专题进行,分别为专题一是新课标下的小学数学教学设计,专题二是小学数学教学中运用数学工具的策略,专题三是小学数学课堂教学提问与反思的教学策略,专题四是小学数学课堂教学组织互动交流的教学策略,专题五是课堂教学的观察与诊断,专题六是教师心理问题的自我调适,专题七是新课程实施中的问题与对策--义务教育阶段。整个培训在充分调查教师实施新课标中产生的困惑和儿童学习中遇到的难点的基础上,围绕国家课标与自身修养、数学本质与数学素养、如何落实国家课标三方面进行重点讲解。本次培训最突出的就是结合许多教学案例进行讲解,做到有的放矢,理念不孤立、内容也不空洞;大量教学实录让我学习起来也很感兴趣,更能对照自己教学找到不足和改进的地方。

其一,在教学小学数学的时候,应该“源于教材,高于教材”;就像我们不仅知道0是自然数还知道为什么是自然数?知道教材上说的什么是面积,但那并不是严格的定义,而对于小学生来说也不需要严格的定义?教师还应该“居高临下,注重本质”;就像我们不仅关注分数的份数定义,还关注分数的商的定义,以及比的定义,分数是一个新的数;我们还知道分数的基本性质是一个等价性,在分数的大家庭里,有多种表示的形式。我还体会到应该“总体把握,做到心中有数”;更感觉到数学教学应该“与时俱进,富有时代特色”,就象身份证检验码,以及图形的运动变换,和富有时代气息的问题解决都是在不断提醒我们要有“与时俱进”的眼光来看小学数学。

其二,教学目标是让学生发展思维,掌握解决问题中的各种策略,从而长效地、持久地在学习的过程中间形成独立获取知识的意识,提高主动解决问题的能力,如果能真正有效地将策略教学渗透在我们日常的数学教学活动之中,而不是“为教策略而教策略”,那么,我相信,将会有更多的学生被数学的内在魅力所深深的陶醉与吸引。数学教学要贴近学生生活,又能够体现数学学习过程,并且使用得当的现代教学媒体,会给学生的学习活动带来一系列的良好变化,可以提高和促进学习。

本次培训充分关注一线教师的实际需要,不仅在大的纬度上帮助教师构建理论体系,同时更关注新课程背景下课堂教学深层问题。在讲座研讨活动中,巧妙地运用一个教学案例,让大家深刻地理解“什么是教学设计”,懂得“教学设计的基本程序”,掌握“教学设计的核心是什么”。明白“抓住教学目标、抓住学生思考、抓住教学反思、落实教学环节、落实教学活动,”在充分的教学准备的前提下,设计和上出高质量的新课程数学教学课。为大家提供看得见摸得着的现实经验。几位教师的精彩课堂实例展示以及丰富多彩的教学片段设计、小组交流等都使每一位参培教师在观摩、思考、碰撞中得到提高。他们的成长经历,感动着学员们一颗颗驿动的心,闪烁着浓浓的新理念和新尝试的课堂教学,青春荡漾,新气十足,为学员提供学习和研究的现场。

整个培训活动从实践到理论,循序渐进,打破过去从理论到实践的传统。从培训的思维方法看,从过去的理论演绎转化为从实际到理论的归纳。不仅降低学习的.难度,而且提高学习的实效。紧张有序的培训又为我们打开一扇窗,让我们透过这扇窗去眺望教育的又一片新视野。”

有这次数学远程培训让我深有感触:第一、数学教学不能只凭经验。从经验中学习是每一个人天天都在做而且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依赖经验教学实际上只是将教学实际当作一个操作性活动,即依赖已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和一定的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。这样从事教学活动,我们可称之为经验型的,认为自己的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,因为师生之间在数学知识、数学活动经验、社会生活阅历等方面的差异使得这样的感觉通常是不可靠的,甚至是错误的。例如:多年来我们在上复习课的时候总有一个将知识做为小结的环节,而且都是由教师给出答案,例如用语言或图表罗列出所学知识。第二、理智型的教学需要反思。它是一种理性的以职业道德、职业知识作为教学活动的基本出发点,努力追求教学实践的合理性。从经验型教学走向理智型教学的关键步骤就是教学反思。

对一名数学教师而言教学反思可以从以下几个方面展开:对数学概念的反思、对学数学的反思、对教数学的反思。

1.对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从教的角度去看数学,他不仅要能做,还应当能够教会别人去做,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。

2.当学生走进数学课堂时,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着空的容器,按照自己的意思往这些空的容器里灌输数学,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

3.教得好本质上是为促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?我们在上课、评卷、答疑解难时,我们自以为讲清楚明白,学生受到一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白,但并没有理解问题的本质性的东西。

通过这次研修学习,我找到以前教学中遇到的困惑和难点的解决方法;通过这次研修学习,对我的各方面都有很大的提升。

数学培训总结【第二篇】

20xx年9月7日至25日,我有幸参加了由保定学院承担的河北省省初中数学骨干教师培训。这次培训对于自己收益很大,培训时间安排合理紧凑,老师们讲课精彩,教学内容丰富多彩。这次培训给我们提供了一个再学习、再提高的机会,让我们能聚集在一起相互交流,共同学习,取长补短,共同提高。通过这次培训,收获很多,眼界开阔了,思考问题能站在更高的境界,许多疑问得到了解决或者启发。我们不仅学到了丰富的知识,进一步提高了业务素质。现总结如下:

一、更新了教育教学观念,以新观念指导教学

时代在不断进步,社会在不停前行。同样,教育教学理念也应与时俱进。特别是随着新课程改革的纵深发展,很多教育教学中的深层次问题不断地暴露,这时候更需要理论的指示与专家的引领。对于我个人而言,这次培训无疑是一场“及时雨”,不仅对理清新课改中的种种关系有帮助,而且对突破新时代教育教学中一些“瓶颈” 问题提供新的解决思路与方法。

首都师大博导、新课标研制组组长王尚志教授的《整体把握新课程下的初中数学》的专题报告。他细致的分析了新课改的一些重大变化,如有原来常提的双基改为了四基,两种能力也增为四种能力,这些都对一线教师产生了深深的触动,并对一线教师提出了新的要求。如何在教学中落实成为新时期一线数学教师所面临的问题,同时也提出了初中数学教学不要仅仅局限于数学课堂,要提高各方面知识和能力。

二、更新了教育教学知识,结合新知识服务教学

教师要知识的更新与教学艺术的更新。作为数学老师,他应是始终站在科学知识岸边的摆渡人,传承知识与文化;他应是学生灵魂的塑造师与精神垃圾的清道夫。所以,作为数学教师必须时时保持充电的状态,此次培训无疑是一次良好的机会。经过培训,就我个人而言,不仅在学科知识方面得到一次全面的补充,而且在教学艺术方面得一次新的补充。

人民教育出版社中学数学室主任、课程教材研究所研究员章建跃博士《有效改进课堂教学》的专题报告,对初中数学的教学目标,课堂设计进行了深入的阐释,提出这是聚焦课堂的教学研究的最直接的方式方法。保定市数学教研员徐建乐老师《进一步理解新课程下的教与学》,保定市新市区数学教研员王卫国老师《数学复习课设计的实践与思考》等专题报告都从具体教学设计、教师教学、学生学习的方面对初中学学教学从不同方面进行了细致分析和讲解。同时强调现在的教师需要有反思精神,需要掌握教育学知识,才能成长为学生喜欢的教师。

总之,教育是一门艺术,需要老师不断的自己更新,才能更上一层楼。

三、观摩了名师教育教学,合理吸收利用于教学

此次培训活动的一大特色就是理论联系实际。不仅聆听了专家的解读,而且近距离地学习了名师的教育教学艺术和班级管理艺术。

保定三中章魏老师的《把握数学本质,打造有效数学课堂》,他通过多达42个实际课例讲授了提高数学素质是实现有效课堂的前提及教师应具备的数学学科专业知识等内容,通过多达几十个实例具体讲解课堂的各环节设计。让学生发现提出问题能力的培养,作为教师首先就要对教材细琢磨,换个角度多想想,发现提出问题,才符合新形势下对我们一线教师的要求!

观摩了徐水二中许春英教师、北京九中三名教师、保定七中教师的教学,大家积极开展研讨,研讨中没有虚假的恭维,只有真知灼见、真实流露;没有形式上的大话、套话,只有深入思考后的针锋相对。现场研讨,成为思维交锋、不同地域多元教研文化交融的平台,感觉收获颇丰。

四、理解了教师成长,加速成长要引领教学

教育的.发展,关键在教师的成长。教师是学校发展的基石,学校的软实力来自己于拥有一只业务能力强,团结敬业的教师队伍。对于个人而言,教师的成长不仅是时代的要求,更是适当现代教育的需要。此次培训,很多专家与同仁重点谈了教师如何规划自己的成长之路,成为名师,成为教育家。

如保定学院韩素兰教授的《求解中学教师科研难题》的报告中关于中学教师研究解疑的讲解条理清晰,研究及书写论文步骤详细,并且每点都联系了大量实际案例,实际操作性强,听起来很清楚明白,顿时觉得课题写论文也并不是一件难事。保定学院常务副院长朱红素教授《适者生存,强者精彩---骨干教师成长为名师的历程》从名师的界定、特征解读、条件阐述、成长路径等四个方面进行了讲解。提出作为名师要具备或尽快培养较强的个人能力:精于教学、长于教研、善于写作。 保定学院数学系主任周和月教授《几何画板与中学数学教学》学到了利用几何画板达到更好的教学要求实现教学目标。

五、结识了全省教学名师,促进兄弟学校联系教学

此次培训是一个很好的平台,参加培训的都是全省教学一线的精英、名师,对教育教学都是自己独到的见解。所以此次培训是一个非常好的相互学习的机会,平时大家一起学习共同交流。认识,在交流中提升;情感,在交流中深化。同时,通过此次机会,建立友谊的纽带亦为乐事。创办的qq群,成为了大家各在一方时交流的平台。

六、积极发挥示范引领作用,促进学校的教育教学

集中培训后,我主动将这次培训的成果带回单位,充分发挥骨干教师的作用,积极示范,大胆引领,带领全校的数学教师投入到学校教育教学改革中。在教研组活动中,我积极解答教师教学中遇到的各种难题,引导互动和交流,促进了大家的专业素质的成长。

参加省级骨干教师培训是自己成长路上的一次重要经历,我格外珍惜。培训时积极认真,回到学校,我对自己严格要求,事事仔细,目的就是要将学校的年轻教师都培养出来。我相信,通过这次培训,我在初中数学教学的大路上一定会走得更稳更远!

数学培训总结【第三篇】

在此期间我充分利用培训时间学习,感到既有辛苦,又有收获。既有付出,又有新所得。这次培训让我有幸与专家和各地的数学精英们交流,面对每次探讨的主题,大家畅所欲言,各抒已见,浓浓的学习氛围不言而喻,尽管不曾谋面,但培训拉近了我们的距离。全面提升了自己的基本素质和业务综合能力,对于今后的发展起到了积极的促进作用。现在就把我个人培训学习活动主要收获总结如下:

一、转变思想,更新观念

我积极投身网络培训的学习当中,切实做到了三个“自觉”:自觉参加上级组织的网络学习培训,自觉参加讨论,自觉上交作业。通过培训,使我明确了现代教育的本质,明确课改对于教师提出了什么样的素质要求。我通过深入学习,从而明确了作为一名教师必须不断的提高自己,充实自己,具有丰富的知识内涵,扎实的教学基本功,否则就要被时代所淘汰,增强了自身学习的紧迫性,危机感和责任感,树立了“以学生发展为本”的教育思想,不断进行教学观念的更新,教学行为和学生的学习方式也有了根本性的改变。

二、积极培训,深刻感悟

在培训期间,我坚持在百忙中抽出时间在网上学习,通过这次培训学习,学了不少知识,为我营造了一个广阔的学习天地,使我掌握了先进的教育理念和方法。我觉得在理论的`形成方面有大幅度的提高。在培训中有大量的案例,深入浅出的阐明了理论,通过与专家,学员的在线互动交流,专家的真知灼见与精辟见解,以及同行的精彩点评,交流与感悟也让得到我意想不到的收获,专家的讲座,每一专题的各个观点及案例,很好地解决了我们在教学过程中一些感到束手无策的问题,也对自己以前的教学有了一次彻底的反思。培训中,我还阅读了大量的先进材料和记录了一些先进的理论与方法,并把这些科学的理论与方法应用于教学实践中,取得较好的教学效果。培训学习不但学有所获,更重要的是一定要做到有所用。

三、反思教学工作,不断进取

在教学中,我不断思量自己在工作中的不足努力提高自己的业务水平,继续向优秀骨干教师学习,向有经验的教师请教。对于一个教师,通过这次网上培训,让我懂得了网络的重要性;让我懂得了如何运用网络资源。在教学设计过程中,我依据教育教学原理、应用系统、科学的方法,研究、探索教和学系统中各要素之间及要素与整体之间的本质联系,然后对教学内容、教学媒体、教学策略和教学评价等要素进行具体计划。我在教学中,鼓励学生收集身边有关的数学问题,在课堂上开辟一片互相交流、互相讨论关注问题的天地。通过这样的资料互动形式把课堂教学与社会生活联系起来,体现数学来源于社会又应用于社会的一面。让学生学得更轻松也让学生能够更多的参与到课堂之中得到更多的操作技巧。通过努力,我根据数学学科的特点,迎合学生好奇心强的特性,大胆地进行课堂改革。把课堂与生活拉近,以形式多样的探究活动为主,让数学课的范围扩大到生活的方方面面。

四、立足课堂在实践中提升自身价值

课堂是教师体现自身价值的主阵地,我本着“一切为了学生,为了学生的一切”的理念,我将自己的爱全身心地融入到学生中。今后的教学中,我将努力将所学的新课程理念应用到课堂教学实践中,立足“用活新教材,实践新理念。”力求让我的数学教学更具特色,形成独具风格的教学模式,更好地体现素质教育的要求,提高数学教学质量。同时作为班主任的我深深懂得,教师的一言一行都影响着学生,都会对学生起着言传身教的作用。思想教育要常抓不懈,着重培养学生良好的道德品质、学习习惯、劳动习惯和文明行为习惯等。

五、培训提高,优化课堂

作为传道授业的老师,只有不断的更新自己的知识,不断提高自身素质,不断的完善自己,才能教好学生。如果自身散漫,怎能要求学生认真。要提高我们的自身素质,这要求我们年轻教师多听取学生和老教师的各种意见。并且自身不断的学习,积极学习,不断开辟新教法。摒弃旧的教学方法,把先进的教学模式引入课堂。

六、远程培训是引领着我前进发动机

远程培训改变了我的教育教学的思维方式,给了我前行的动力。每天打开电脑的第一件事,就是登陆我们的班级,在新的作业、日志、研讨话题中汲取我需要的营养。从专家学者那里学到了很多,也从身边的优秀教师那里学到了很多。学习的过程是短暂的,但学习的效果是实实在在的。

这次学习,我将会对远程培训有了更加深入的了解,也会更深刻地理解所包含的教育理念,更好的做好新课改工作。通过本次远程培训学习,我得到的不仅仅是知识,更重要的是一种理念,它将在我们今后的工作中发挥更大的作用。通过培训的平台,利用网络资源,不断的学习,不断挑战自己,超越自己,跟上时代的步伐,努力实践,争取使自身教育教学水平有较快提高,努力适应二十一世纪对学习型创新人才的新要求。

数学培训总结【第四篇】

去年,我有幸参加了颍东区小学语数学骨干教师培训班,共十期的培训已经结束,这次培训让我受益匪浅。我的教育思想、教学观念、教育教学理论得到更新,极大的丰富了我的教学方法、教学手段、教育教学策略。这次培训的内容以骨干教师的现场课为主,同时还有上海市教育局教研室专家作专题报告。现将自己的心得体会总结如下:上海专家的讲座,阐述了他们对小学数学教学的独特见解,对新课程的各种看法,对数学思想方法的探讨,并向我们介绍了比较前沿的教育理论知识。听了他们的讲解,我的思想深深受到震撼:作为一个普通的小学数学教师,我思考的太少。平常我们在学校中,考虑的都是如何上好一堂课,对于学生的长期发展考虑的并不多,甚至于忽视这一方面。

听了讲座,我觉得在今后的教学生涯中,我们不应仅仅着眼于一些短期利益,而应把眼光放长远一些;课堂教学中应重视数学思想方法的渗透,而不局限于单一解答方法的教学;不要盲目地迷信新课程标准,而应辨证地看待它。

除了理论知识以外,每期培训还为我们安排了本地教师和上海名师同上一节课的同课异构活动。这些课在教学过程中创设的情境,目的明确,为教学服务。例如刘老师在整个教学过程都紧紧围绕着教学目标,非常具体,有新意和启发性。在教学除法的竖式从理解的角度,分一分的角度来理解和试写,使原来的空洞的专家说的必须满堂灌的教学内容教活,学生能够理解才能记忆深刻。费时也是值得的。原来这样的内容也可以培养学生的创造性,也可以体现过程性。

在教学中,教师放手让学生自主探究解决问题的方法,整节课,每一位教师都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。执教者的语言精练、丰富,对学生鼓励性的语言非常值得我学习。这些优质课授课教师注重从学生的生活实际出发,为学生创设现实的生活情景,充分发挥学生的主体作用,引导学生自主学习、合作交流的教学模式,让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念

1、我深刻地感受到了小学数学源于生活,体现于生活。

教师作为学生学习的引导者为学生提供活动的舞台,调整学习的方向,是关键时刻予以适当的点拔的学习过程的支持者。在课堂学习中,学习的材料来源不再是单一的教材,更多的是从学生的生活经验来编材。与生活贴近的知识,学生听起来亲近,求知欲就强,要突破的愿望就强,做起题来积极性高,也体现出教学面向学生,面向生活,反映现实生活,而这些正是这群听课学生日常生活中经常见到的,使学生感到数学问题新颖亲近变得摸得着,看得见,易于接受,从而激发了学生内在的认知要求,变“要我学”为“我要学”。更好的启迪了学生的思维,使学生的创新意识得到了较高的培养,也实现了“生活经验数学化。”

2、在这几节课中,体现生本教育,教师能放手让学生自己动手操作,自主探究解决问题的方法,在课上,每一位教师都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。参加这次授课的教师注重从学生的生活实际出发,为学生创设现实的生活情景,充分发挥学生的主体作用,引导学生自主学习、合作交流的教学模式,让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念。以小组合作的方式,不仅培养了学生的合作能力,也给了学生一种集体荣誉感。

3、精彩的导课非常重要。参赛的教师几乎都精心设计了课堂导入,像周德花老师,就以小游戏的方式导入新课。好的导课可以拉近师生距离,使学生的向师性更强,积极参与教师的教学活动,提高课堂学习效率。

4、教师评价要及时到位并且多方位。教学过程中,几乎每位教师都注意了及时评价及激励评价,对学生的赞扬和鼓励不断,同时也及时纠正学生的行为习惯。这些看似微不足道的语言,在学生的心里却可以激起不小的情感波澜,对于整个课堂的教学效果的提高也起到了相当程度的`积极影响。

5、注重“板书”的设计与书写。多年来,由于多媒体课件的闪亮登场,教师的板书也好象置于被人遗忘的角落,悄然隐退了。殊不知,课件是不能完全代替板书的,课件的呈现具有瞬时性,况且课件的作用是“辅助”教学,怎么能替代一目了然、提纲携领的板书设计呢?板书也是教师基本功的一个侧面反映。这次优质课,每一位老师都在板书的设计上下了工夫,有的老师书写工整,排列有序;并且老师们出手一笔清秀的字跃然而上,为课堂增色添彩等。总之,“板书”又重新回到了自己的位置,发挥了它在课堂教学中的作用。每位老师的板书列出了本节知识点,并且将每个知识点之间的联系用线画出,使本节知识清楚明了。6、这些课在教学过程中应用多媒体课件进行直观教学,活跃了课堂气氛,激发学习兴趣。每一节课都通过多媒体课件的展示使抽象的知识更直观,更让学生容易理解和接受。

总之在这次活动中,上课的老师都能根据小学生的特点为学生创设充满趣味的学习情景,以激发他们的学习兴趣。最大限度地利用小学生好奇、好动、好问等心理特点,并紧密结合数学学科的自身特点,启迪他们积极思考,激发学生的求知欲,激起他们探索、追求的浓厚兴趣。促使学生的认知情感由潜伏状态转入积极状态,由自发的好奇心变为强烈的求知欲,产生跃跃欲试的主体探索意识,实现课堂教学中师生心理的同步发展。

在今后的教学工作中我一定要努力探究,找出教育教学方面的差距,向这些教育教学经验丰富的老师学习,教坛无边,学海无涯,在以后的教学中,以更加昂扬的斗志,以更加饱满的热情,全身心地投入到教育教学工作中。

学习虽然结束了,内心积蓄无限力量的我将以饱满的热情投入到工作之中,我会努力把学到的理念、方法用于自己的教学实践之中,用先进的教学理念、优化的教学方法回馈给学生,我会用我的爱心去教诲我的学生,用我的热情去培育我的学生,无悔于我的教育事业。

数学培训总结【第五篇】

一、更深刻的理解了师德和师爱的真谛。

在教育中,一切师德要求都基于教师的人格,因为师德的魅力主要从人格特征中显示出来,历代的教育家提出的“为人师表”、“以身作则”、“循循善诱”、“诲人不倦”、“躬行实践”等,既是师德的规范,又是教师良好人格的品格特征的体现。在学生心目中,教师是社会的规范、道德的化身、人类的楷模、父母的替身。他们都把师德高尚的教师作为学习的榜样,模仿其态度、情趣、品行、乃至行为举止、音容笑貌、板书笔迹等。作为教师不仅要有高尚的师德还要给予学生关爱。每个学生都是一部书,都是一个故事,都是一首诗我们要知道的是严中有爱,爱中有严。要做到:严而有格、严而有度、严而有衡、严而有方、严而有情。北师大教授林崇德讲过:“疼爱自己的孩子是本能,而热爱别人的孩子是神圣!”因为教师对学生的爱“在性质上是一种只讲付出不记回报的、无私的、广泛的且没有血缘关系的爱,在原则上是一种严慈相济的爱。这种爱是神圣的。这种爱是教师教育学生的感情基础,学生一旦体会到这种感情,就会‘亲其师’,从而‘信其道’,也正是在这个过程中,教育实现了其根本的功能。因此,师爱就是师魂。”

二、更进一步理解了新课标教学改革的重要性。

课堂教学是学校课程实施的主渠道。课堂改变了,学校教育才会改变;课堂优质,学生才会优质;课堂创新,学生才会创新;课堂进步,教师才会成长。教师的学科知识水平不只是在职前专业学习中积累的,也是在职岗位研修中不断充实、丰富起来的。在岗研修不同于职前学习,需要根据所教学科课程标准,从教学的价值定位出发,在深入钻研,力求准确挖掘所教学科知识的内核、结构、关联和丰富价值的基础上,根据儿童已有知识经验对教材等教学资源进行加工、重组,并选择恰当的方式加以呈现,避免粗浅、零散、狭隘、空洞等,提升学生学习与发展的质量。

有了这次数学远程培训让我深有感触:第一、数学教学不能只凭经验。从经验中学习是每一个人天天都在做而且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依赖经验教学实际上只是将教学实际当作一个操作性活动,即依赖已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和一定的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。这样从事教学活动,我们可称之为经验型的,认为自己的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,因为师生之间在数学知识、数学活动经验、社会生活阅历等方面的.差异使得这样的感觉通常是不可靠的,甚至是错误的。例如:多年来我们在上复习课的时候总有一个将知识做为小结的环节,而且都是由教师给出答案,例如用语言或图表罗列出所学知识。第二、理智型的教学需要反思。它是一种理性的以职业道德、职业知识作为教学活动的基本出发点,努力追求教学实践的合理性。从经验型教学走向理智型教学的关键步骤就是教学反思。对一名数学教师而言教学反思可以从以下几个方面展开:对数学概念的反思、对学数学的反思、对教数学的反思。1.对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从教的角度去看数学,他不仅要能做,还应当能够教会别人去做,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。2.当学生走进数学课堂时,他们的头脑并不是一张白纸对数学有着自己的认识和感受。教师不能把他们看着空的容器,按照自己的意思往这些空的容器里灌输数学,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。3.教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。

通过这次研修学习,我找到了以前教学中遇到的困惑和难点的解决方法;通过这次研修学习,对我的各方面都有很大的提升。

数学培训总结【第六篇】

数”的产生成为人类文明发展的一个重要的标志。人类从识别事物多寡的原始的数觉能力,到抽象的“数”概念的形成,经历了一个缓慢渐进的过程。

第一次扩充:分数的引进;第二次扩充:0的引进;第三次扩充:负数的引进;第四次扩充:无理数的引进;第五次扩充:复数的引进。

从原有数集扩充到新数集所遵循的原则:原数集是扩充后新数集的真子集;原数集定义的元素间的关系和运算在新数集中同样地被定义;原数集中的元素在新数集中定义的运算结果与在原数集中的运算结果一致,且基本运算律保持;在原数集中不能施行或不能完全施行的某种运算,在新数集中能够施行;新数集是满足上述四条的数集中的最小数集。扩充方法:一种是把新引进的数加到已建立的数系中而扩充。另一种是从理论上创造一个集合,即通过定义等价类来建立新数系,然后指出新数系的一个部分集合与以前数,一种新的数,也就实现了数系的一次扩张。引入了负数,就实现了这个数系关于加减运算的自封闭。

有理数有一种简单的几何解释在一条水平的直线上,确定一段线段为单位长度,把它的左、右端点分别标设为0和1。正整数在0的右边,负整数在0的左边。对于分母q的有理数,就可以用把单位区间q等分的那些分点表示。每一个有理数都可以找到数轴上的一点与之对应。

无理数的引入正方形的边长和对角线不可公度。实现了数系的又一次扩张,可以满足数学上开方运算的需要,实现了实数系关于加减运算的封闭性。戴德金阐述了有理数的有序性、稠密性和戴德金分割。戴德金分割是指,每个有理数都将全部有理数分为两类,使得第一类中每个数都小于第二类中的任一个数,这个分类的有理数可以算在两类的任何一类中。利用这个分割法可以得到无理数的定义。

所建立的数系是同构的。

自然数的两大基本理论:基数理论和序数理论

基数理论当我们把所有表示数量的符号放在一起就得到了一个集合,我们称之为“数集”,为了度量“数集”当中表示数量的符号个数,我们首先要定义一个概念就是“基数”。19世纪中叶,数学家康托以集合理论为基础提出了自然数的基数理论。等价集合的共同特征称为基数。对于有限集合来说,基数就是元素的个数。自然数就有有限集合A的基数叫做自然数。记作“”。当集合是有限集时,该集合的基数就是自然数。空集的基数就是0。而一切自然数组成的集合,我们称之为自然数集,记为N。

序数理论皮亚诺1889年建立了自然数的序数理论,进而完全确立了数系的理论。是根据一个集合里某些元素之间有“后继”这一基本关系和五条公理(皮亚诺公理),把自然数集里的元素按1、2、……这样一种基本关系而完全确定下来。

定义非空集合N中的元素叫做自然数,如果N的元素之间有一个基本关系“后继”(b后继于a,记为b=a′),并满足下列公理:

(1)0∈N;

(2)0不是N中任何元素的后继元素;

(3)对N中任何元素a,有唯一的a′∈N;

(4)对N中任何元素a,如果a≠0,那么,a必后继于N中某一元素b;

(5)(归纳公理)如果MN,而且满足条件:①0∈M;②若a∈M,则a′∈M.那么,M=N这样,所构成的系统称为皮亚诺公理系统,它就是自然数系。

自然数0是作为空集的标记。在空集中,“0”作为记数法中的空位,在位置制记数中是不可缺少的。

自然数系所蕴含的思想

对应思想(可数的集合)自然数建立在对应概念之上,而且对应的思想也成为自然数的一个重要性质。一一对应关系是集合论中建立两个集合“相等”关系的一个重要概念。(导致了俗称“理发师悖论”的罗素悖论的发现)德国策梅罗提出七条公理,建立了一种不会产生悖论的集合论,后又经过德国弗芝克尔改进形成了一个无矛盾的集合论公理系统(ZF公理系统)。数位思想

位置制记数法,就是运用少量的符号,通过它们不同个数的排列,以表示不同的数。用十个记号来表示一切的数,每个记号不但有绝对的值,而且有位置的值。十进位位置制记数之产生于中国,是与算筹的使用与筹算制度的演进分不开的。

负数的数学含义至少包括如下几个方面:+a与-a表示一对相反意义的量。引入负

数学符号有两种重要属性:抽象性和形象性。数学符号的意义在于:有了数学符号,才使得抽象的数学概念有了具体的表现形式,才使得具有一般意义的推理和运算、抽象的数学思维能以直观的、简约的形式表现出来。

字母代表数代数,原意就是指“文字代表数”的学问。使得许多算术问题可以转换为代数方程问题求解。根本的内涵是“未知数的`符号x可以和数一样进行四则运算。文字代表数的真正价值在于:字母能够和数字一起进行四则运算和乘方、开方,进行指数、对数、三角等运算,乃至对字母进行微分、积分运算等等。

解析式数字、字母、运算符号按照一定规律有意义地结合而成的符号组合。解析式中的字母可以有不同的含义不同的含义不影响它基本运算规律和变形规则。解析式可以区分为两大类:一类是只含有代数运算的解析式叫代数式,没有开方运算的代数式称为有理式,否则称为无理式;没有除法运算的有理式称为整式,否则称为分式;没有加、减运算的整式称为单项式,否则称为多项式。另一类是包含初等超越运算的解析式统称为初等超越式,简称超越式。它包括指数式、对数式、三角函数式、反三角函数式。

解析式的恒等变形把一个给定的解析式变换为另一个与它恒等的解析式,叫做解析式的恒等变形。恒等是相对的。式的恒等变形也是可以连写的,因为它们对一切数,代入式都相等。但是,解方程时的同解变形,不是恒等变形,。代数式数学的符号语言

代数式是在数系基础上发展起来的。在初等代数中,所涉及的运算可分为两大类:1代数运算2初等超越运算:指数是无理数的乘方、对数、三角、反三角运算。

定义,在一个解析式中,如果对字母只进行有限次代数运算,那么这个解析式就称为代数式;如果对字母进行了有限次的初等超越运算,那么这个解析式就称为初等超越式,简称超越式。还可以进一步分类:只含有加、减、乘、除、指数为整数的乘方运算的代数式称为有理式;其余的代数式称为无理式;在有理式中,只含有加、减、乘运算称为整式(或多项式),其余的有理式称为分式。

“数”发展到“式”的意义导致了运算形式化、程序化及规则的公理化,包含了计算对象扩大化,即数系的扩大化问题。将抽象的符号运算应用到更一般的对象上,开辟了构造数学的新方向,为抽象代数学的发展埋下了伏笔,成为近代数学的显著特征。

数学符号具有重要的属性一是它的抽象性。符号代表了事物本质的特征,从而具有代表性和一般性。另一个重要的属性在于它的形象性。数学符号不但精确地表示数学抽象,而且是抽象内涵的简约形象。等式和方程

(一)方程的含义“含有未知数的等式叫方程”。这个定义简单明了,为大家所习用。不过,这个定义有不足。“方程是为了寻求未知数,在未知数和已知数之间建立起来的等式关系。”把方程的核心价值提出来了,即为了寻求未知数。

判断一个代数式等式是否是方程就是看等式中的字母是否是待求的未知数。方程的概念一般用于两个领域:“求某个未知数的数”和“曲线与方程”在这两个领域中“方程”的概念本身并没有变化,而是研究的问题有所不同。前者的目的在于求方程的解,而后者则希望研究的是这些解的分布情况。方程解的个数(或解集的大小)与方程的存在域的大小有直接关系。

方程的分类依照方程解的个数分,可将方程分为无解方程(矛盾方程)、有唯一解、有多个解、有无穷多个解和全体实数解等。方程按照它所含有的未知数的个数来分类:集。两个不等式的解集相同,则称这两个不等式是同解的。

不等式有三个基本性质:1不等式两边同时加或减去同一个整式,不等号方向不变,2不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变3不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变。不等式的实际应用在运动变化过程中,如果用函数模型刻画运动变化的两个变量x、y之间的关系,那么.方程模型刻画的是x、y变化过程中某一瞬间的情况,而不等式模型刻画的是变化过程中x、y之间的大小关系,是更普遍存在的状态。不等式尤其在解决“最值”问题上具有广泛的应用。不等式蕴含的思想

(一)模型思想与相等现象相比,不等现象是现实世界中更为普遍的现象,不等式是一元方程、二元方程、多元方程等。

方程借助用字母表示数的代数思想,将未知数同已知数一起描述问题的代数表达形式,形成了方程的基本思想。

方程思想具有很丰富的含义,其核心体现在:一是模型思想,二是化归思想。学习方程内容最主要的事情集中在两个方面。一方面是建模,另一方面是会解方程。关于方程建模大自然的许多客观规律都表现为量与量之间的某种关系,将它表示出来往往就是一个方程式。初中方程的教学不能过分地停留在数学层面上必须使学生真正体会到数学与现实生活密不可分的联系。体会方程是一种用数学符号提炼现实生活中的特定关系的过程。必须学会抽象将关系抽象为数学符号。

方程设计思想的思路先进行生活中的提炼,然后到数学表达,到形式化的方程,再到最终解决方程问题。

初中数学方程的常见解法:换元法、因式分解法、图像法、求根公式法。

等式与方程的关系建立方程是借助等式作为其上位概念来完成的。方程是一种特殊的等式,是在说明相等是怎么回事,等式可以是数字之间的相等,可以是恒等,而方程刻画的可以是两件事情之间的相等,可以是有条件的相等,也可以使一种随机的相等。不等式

学习的意义不等式可以表示一种界限,本身就是一种规律。其次,研究不等式可以导致等式。最后,不等式在几何上可以表示一个区域。

不等关系与相等关系既是矛盾独立的,也是相互统一的。不等关系往往可以等价地转化为相等关系加以解决。

不等式的含义两个实数或代数式用符号连接起来的所得到的式子叫做不等式。如果不论用什么实数代替不等式中的字母,它都能够成立,这样的不等式叫绝对不等式,如果只用某些范围内的实数代替不等式中的字母,它才能够成立,这样的不等式叫条件不等式。如果不论用什么样的实数值代替不等式中的字母,不等式都不能成立,这样的不等式叫矛盾不等式。当不等号两边的解析式都是代数式时,称为代数不等式;两边的解析式至少有一个是超越式时,称为超越不等式。不等式解集表示方法

不等式所有解的集合,叫做解集。求不等式解集的过程叫解不等式。不等式组中每一个不等式解集的交集叫做不等式组的解集。

一个不等式的解集表示方法1数轴表示法即在数轴上把不等式的解集表示出来。2集合表示法即用集合来表示不等式的解集。3区间表示法即用区间来表示不等式的解

刻画不等现象的有力模型。通过分析实际问题中的数量关系,列出不等式,通过解不等式得到实际问题的答案,这就体现了不等式的模型思想。同时,这种模型经常与函数、方程联系在一起,三者都是刻画现实世界中量与量之间变化规律的重要模型,在解决实际问题时,要合理选择这三种重要的数学模型。(二)辩证思想通过c=a-b的媒介作用,不等式a>b与等式a=b+c建立了一种“等价”关系。这是一种辩证关系。恰当地运用这种思想可以轻松地化解相当多的问题。(三)数形结合思想根据题意可列出不等式组,运用数轴表示不等式组的解集,可以直观形象地解决问题。这种思想正是数形结合思想。函数

函数是描述客观世界变化规律的重要数学模型。

1755年,欧拉首次给出了函数变量定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后面的变量变化时,前者的这些量也随之变化,则将前面的变量称之为后一些变量的函数。”由此演变为目前的函数的“变量说”黎曼在1851定义:“我们假定z是一个变量,如果对它的每一个值,都有未知量W的每一个值与之对应,则称W是Z的函数。”。1939年,布尔巴基学派主借用了笛卡儿积建立关系,进而定义函数:

1)对

中每一个元素

,存在

,使

(2)若且,则。函数记作:”分别称以上函数定义为变量说、对应说和关系说。函数概念的核心思想

数学的核心是研究关系,即数量关系、图形关系和随机关系。函数研究的是两个变量之间的数量关系:一个变量的取值发生了变化,另一个变量的取值也发生变化,这就是函数表达的数量之间的对应关系。其中有三点是重要的,一是变量的取值是实数;二是因变量的取值是唯一的;三是必须借助数字以外的符号表示函数。函数的表达方式一般有三种:解析式法,表格法,图像法。

解析式是最常用的方法,适用于表示连续函数或者分段函数。解析式有利于研究函数性质,构建数学模型,但对初学者来说也是抽象的。列表法适用于表达变量取值是离散的情况。利用图像法可以直观地表述函数的形态,有利于分析函数的性质,但作图是比较困难的,用何种方法表达函数可因题而议。中学数学研究的函数性质

数学中研究函数主要是研究函数的变化特征。中学阶段主要研究函数的周期性,也涉及

奇偶性;在高中阶段主要研究函数的单调性、周期性,也讨论某些函数的奇偶性。(一)函数的周期性周期性反映了函数变化周而复始的规律。是中学阶段学习函数的一个基本的性质。周期函数是刻画周期变化的基本函数模型,使我们集中研究函数在一个周期里的变化,了解函数在整个定义域内的变化情况。

(二)函数的奇偶性函数的奇偶性也是我们在中学阶段学习函数时要研究的函数的性质,但它不是最基本的性质。奇偶性反应了函数图形的对称性质,可以帮助我们用对称思想来研究函数的变化规律。

(三)函数的单调性单调性是讨论函数“变化”的一个最基本的性质。从几何的角度看,就是研究函数图像走势的变化规律。函数与其它内容的联系

(一)函数与方程用函数的观点看待方程可以把方程的根看成函数与x轴交点的横坐.解析几何的产生与发展

笛卡尔提出了平面坐标系的概念,实现了点与数对的对应,将圆锥曲线用含有两面三刀个求知数的方程来表示,并且形成了一系列全新的理论与方法,解析几何就这样产生了。现代几何的产生与发展

人们不断发现《几何原本》在逻辑上不够严密之处,在尝试用其他公理、公设证明第五公设“的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。初中数学课程中的几何学内容

(一)直观几何几何学是其中研究“形”的分支。几何图形可以直观地表示出来,人们认识图形的初级阶段,主要依靠形象思维。“形象思维”也就是强调几何直观。

(二)演绎几何几何图形本身具有抽象性和一般性,一种几何概念可能包含无限多种不同的情形,因此,研究图形的形状、大小和位置关系时,不能仅仅依靠直观实验的方法,标,即零点的横坐标。方程可看作函数的局部性质,求方程的根就变成了求函数图形与x轴的交点问题。

(二)函数与数列数列是特殊的函数。它的定义域一般是指非负的正整数集,有时也可以为自然数集,或者自然数集的子集。数列通常称为离散函数。等差数列是线性函数的离散化,而等比数列是指数函数的离散化。

(三)函数与不等式我们首先确定函数图像与x轴的交点(方程f(x)=0的解),再根据函数的图像来求解不等式。

(四)函数与线性规划是最优化问题的一部分,从函数的观点看,首先,要确定目标函数,用目标函数来刻画“好、坏”或“大、小”等,接着,需要确定目标函数的可行域。最后,讨论目标函数在可行域(由约束条件确定的定义域)内的最值问题。

解线性规划问题,可归结为以下算法:第一步,确定目标函数;第二步,确定目标函数的可行域;第三步,确定目标函数在可行域内的最值。函数模型

函数是对现实世界数量关系的抽象,是建立思想模型的基础,具有良好的普适性和代表意义。现实生活中,普遍存在着最优化问题----最佳投资、最小成本等,常常归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数建模的思想进行解决。在运用一次函数知识和方法建模解决时,有时要涉及到多种方案,通过比较,从中挑选出最佳的方案。

在实际的教学中,除了使学生了解所学习的函数在现实生活中有丰富的“原型”之外,还应通过实例介绍或让学生通过运算来体验函数模型的多样性。

通过实例,让学生体会、感受数据拟合在预测、规划等方面的重要作用,使学生们学会用数学的知识、思想方法、数学模型解决实际问题,提高运用数学的能力.要鼓励学生收集一些社会生活中普遍使用的函数模型的实例进行探索实践.第二章图形与几何四个基本阶段。

实验几何的形成和发展

人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何。理论几何的形成和发展

柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,欧几里德按照严密的逻辑系统编写的《几何原本》奠定了理论几何的基础。而需要具有一般性和抽象性的方法,其中包括逻辑推理。

以一些原始概念和公理为出发点,逐步对一些几何概念做比较逻辑化的描述,进行一些基本推理和论证。虽然也借助直观和少量代数公理,但是,主要立足逻辑进行几何概念及其性质的分析研究,这就是演绎几何。

(三)度量几何对一些图形进行度量,包括长度,面积,体积,角度等,适当的延伸。(四)变换几何也叫运动几何。这个领域主要讨论平移、旋转、反射等刚体运动,以及相似变换、拓扑变换,并借以研究图形的全等、对称等概念,了解变换之下的不变量。(五)坐标几何即解析几何。在解析几何中,首先是建立坐标系。坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。

经验几何所谓经验几何,通常是直观几何、实验几何的通称,它特别关注学生几何活动经验的积累,以及几何直觉的发展。经验几何的作用

几何学是研究现实世界物体的形状、大小和位置关系的学科,而后发展成为研究一般空间结构、图形关系的学科。

(一)经验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重大的作用,而论证几何在培养人的逻辑思维能力方面起着重要作用。(二)经验几何是学习推理论证几何的必要前提。

学习的内容是由非形式化的推理逐渐提升到形式化的推理,透过直观几何与实验几何的充分学习,对几何对象的熟悉及非形式化的推理,达到知觉性的了解、操作性的了解,进而形成几何推理。

另一方面,我们用来作为推理基础的几何性质,一部分是利用实验归纳的方法得来的,另一部分则是利用已知的几何性质进行“推论”而导出的结果。

(三)实验几何是几何学习的一个阶段和一种认知水平,更是一种几何学习方法。总之,实验几何作为几何学习的一个阶段,在学生几何学习过程中起到承上启下的衔接作用;同时,实验几何是贯穿从直观几何到论证几何学习的一种有益于发现真理、几何直观几何直观具有发现功能,同时也是理解数学的有效渠道。数学概念经过多级抽象充分形式化后,有必要以相对直观可信的数学对象为基础进行理性重建,从而达到思维直观化的理想目标和可应用性要求,这要求数学的直观与形式的统一,才使得数学的完美。

几何直观及其作用《数学课程标准》(修订稿)指出,几何直观主要是指利用图形描述

和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观对于学生的数学发展非常重要:

首先,几何直观是一种创造性思维,是一种很重要的科学研究方式,在科学发现过程中起到不可磨灭的作用。对于数学中的很多问题,灵感往往来自于几何直观。数学家总是力求把他们研究的问题尽量变成可借用的几何直观问题,使他们成为数学发现的向导,随着现代科技的发展,几何直观在计算机图形学、图象处理、图象控制等领域都有诱人的前景。

其次,几何直观是认识论问题,是认识的基础,有助于学生对数学的理解。

借助于几何直观、几何解释,能启迪思路,可以帮助我们理解和接受抽象的内容和方法,抽象观念、形式化语言的直观背景和几何形象,都为学生创造了一个自己主动思考一般地,周长指封闭曲线一周的长度。(二)面积

物体的表面是一个二维的图形,直观地感觉它所占有的区域具有一定的大小,对一个二维图形的表面进行度量以后,用一个“数”标志它的大小,称这个数为该图形的面积。人们约定,将边长为1米的正方形的面积规定为1平方米。

于是,对于边长为整数a米、b米的矩形,总可以将其剖分为若干个边长为1米的正方形,进而,这个矩形就由ab个单位正方形组成,从而,这个矩形的面积为ab平方米(整数)。如果矩形的边长A,B是无理数,而且仍用边长为1的正方形去度量,那么,还要使用极限过程,用一列有理数逼近无理数,an→A,bn→B。依据anbn→AB,以及有理数边长的矩形面积公式,最后得出,矩形的面积也是AB。

这个过程实际上论证了“边长相等的两个矩形的面积的比,等于它们不相等边的长度的的机会,揭示经验的策略,创设不同的数学情景,使学生从洞察和想象的内部源泉入手,通过自主探索、发现和再创造,经历反思性循环,体验和感受数学发现的过程;使学生从非形式化的、算法的、直觉相互作用与矛盾中形成数学观。

最后,几何直观是揭示现代数学本质的有力工具,有助于形成科学正确的世界观和方法论。借助几何直观,揭示研究对象的性质和关系,使思维很容易转向更高级更抽象的空间形式,使学生体验数学创造性工作历程,能够开发学生的创造激情,形成良好的思维品质。

直观几何主要包含哪些内容

以大量丰富的实例为背景,通过观察、操作来探索认识基本图形的性质。这些基本图形主要包括点、线、面、角、平行线、相交线、三角形四边形、圆等,除此之外,还包括尺规作图、视图和投影等。这些内容构成直观几何的重要组成部分。经验几何的具体研究内容

初中几何的主要课程教学目标在于,“积累几何活动经验,发展几何直观、空间观念,进一步感受几何推理的魅力,体会几何的美,初步掌握几何推理的基本形式”,而发展几何直观、积累几何活动经验、培养空间观念,则是经验几何的核心目标。按照初中阶段的经验几何认识过程的不同,通常可以将经验几何的学习内容,分成认识图形、进行立体图形与平面图形的转换、在运动与变换中研究几何图形的有关性质三部分。度量几何几何学起源于图形大小的度量。根据图形的维数,把度量一维图形大小的数称为长度,而将二维图形的大小用面积来表示,体积则是标志三维图形大小的数。线段长度是一切度量的出发点。

长度的含义线段“两端之间的距离”。所谓距离。罗兰德(Rowland)首先使用光栅测量一公尺长度中的波长数。1960年以后,用激光定义“米”。

目前,国际上采用的长度单位,是在1983年10月确定的,即第十七届国际权度大会重新把国际标准制(SI)中的长度单位──“米(meter)”定义为:光于299,792,458分之1秒内在真空中所走的长度,称为“米”。

如果可以用一个线段e衡量两条线段M,N,使得M,N都是e的整数倍,我们称两个线段M,N是可公度的。

辗转相除方法,用后次的an截取前次的an-1,即较长的那个线段减去短的那个线段,如此辗转截取,直到两个线段一样长,这个长度就是公度量。古希腊的毕达哥拉斯学派,发现正方形的边与其对角线不可公度3.周长“圆、椭圆或其它闭合的曲线的周界长度。”

比”。

海伦-秦九韶公式

刘徽用割圆法求圆面积大胆地将极限思想和无穷小分割引入了数学证明。将圆内接正多边形的边数不断加倍,则它们与圆面积的差越来越小,其极限值就是所要求的圆面积。印度圆取两个相等的圆,把它们等分成相同的若干个全等扇形,然后把它们沿半径剖开(但扇形的圆弧仍然连着)、展平成锯齿条形然后,把两个锯齿形互相嵌入即成一个近似的矩形。份数分得愈多,其结果愈接近矩形,这个矩形的高为圆半径r,底为圆周长c,面积为rc,从而得圆面积为.体积是指物质或物体所占空间的大小。

(1)直接度量法。把一种叫做“单位正方体”的空间图形尽可能地堆放在要度量的几何体内,如果被度量的几何体恰好被a个正方体填满,那么这个几何体的体积就等于几个单位体积。(2)间接度量法。量出被度量的几何体中某些线段的长度,再利用有关公式计算出这个几何体的体积。“面积公理”与测度公理

既然图形是一个集合,而相应的图形的面积是一个数,所以,面积是定义在“集合族”之上的一个函数。这个集合函数显然是非负函数,而且正方形的面积是1。当然,两个不重叠的图形之并的面积,必须等于两个图形的面积之和。最后,如果图形经过移动、旋转、反射,其面积应该不变。这些性质放在一起,就成为面积公理的内容。对于周长一定的矩形来说,边长相等时矩形面积最大,即正方形的面积最大。(2)对于面积一定的矩形来说,边长相等时矩形周长最小,即正方形的周长最小。事实上,这个结论可以推广为:在周长相等的情况下,越接近圆的图形面积就越大,如,第四节变换几何

变换就是一个集合到另一个集合的映射。几何变换、变换群的概念

几何变换,就是将几何图形按照某种法则或规律变成另一种几何图形的过程。它对于几何学的研究有重要作用。

变换群。实际上是满足一定条件的若干变换组成的集合:如果某种几何变换的全体组成一个群,就有相应的几何学,而讨论在某种几何变换群下图形保持不变的性质与不变量,就是相应几何学的主要内容。

在初等几何中,变换主要包括全等变换,相似变换,反演变换。

全等变换

如果从平面(空间)到其自身的映射,对于任意两点A、B和它们的像A/,B/总有A/B/=AB。则这个映射叫做平面(空间)的全等变换,或叫做合同变换。在平面内存在两种全等变换,第一种叫做正常全等变换第二种叫做反常全等变换(镜像全等变换),它把一个图形变成与它反常全等的图形,即对于两个全等的图形上每两个对应三角形有相反的方向,并且每两个对应的有向角有相反的方向。相似变换,第一种叫做真正相似变换(正相似变换),第二种叫做镜像相似变换(负相似变换)。真正相似变换把一个图形变换成与它真正相似(正相似)的图形,即使得两个相似图形的每对对应三角形有同一的方向,每对对应角有同一方向。反演变换

在平面内设有一半径为R,中心为O的圆,对于任一个异于O点的点P,将其变从认知规律看,几何学习的基本途径,主要是四步:直观感知→操作确认→演绎推理→度量计算。

欧几里得与演绎几何

公理化方法渊源于几何学,而几何学起源于埃及。

希腊数学家欧几里得编成了《几何原本》一书。这本书内容丰富,结构严谨,对于几何学的发展和几何学的教学都起了巨大的作用,它被人们赞誉为历史上的科学杰作。欧几里得《原本》,原说有15卷,经后人多方面考证,公认只有13卷。欧几里得《原本》对于几何直观、演绎推理进行处理的利弊得失

《原本》作为教科书使用了两千多年。在形成文字的教科书之中,无疑它是最成功的。欧几里得的杰出工作,使以前类似的东西黯然失色。该书问世之后,很快取代了以前的几何教科书,而后者也就很快在人们的记忆中消失了。在训练人的逻辑推理思维方面,换成该射线OP上一点P/,且使OP/OP=R,这个变换叫做平面反演变换。圆O叫做反演基圆,圆心O叫做反演中心或反演极,R叫做反演半径或反演幂,反演变换将过反演中心的射线变成自身,且在此射线上建立对合对应,它使位于圆内的点变成圆外的点,位于圆外的点变成圆内的点,反演中心变成平面内的无限远点。而反演圆上的点则保持不变。空间反演变换可以看作是平面反演变换绕反演基圆的直径旋转而得。反演变换下,将不过反演中心的直线或平面,分别变成过反演中心的圆或球面;将不过反演中心的圆或球面,分别变成另一个不过反演中心的圆或球面。反之,也成立。演变换是反向保角的,即使两线(或两面)所成的角度的大小保持不变,但方向相反。合同变换:平移,旋转,反射平移、旋转与反射的初步描述

图形相似的思想方法体现在图形相似的概念、性质和处理问题的手段之中。我们可以将其归结为如下五个方面:

(1)图形相似问题的核心往往在于三角形相似与成比例线段,体现出化归思想

(2)图形相似是反映大自然奥秘的一个窗口,图形相似在自然、社会和人类生活中具有广泛的普适性。

(3)结构相同,即“同构”,是图形相似的重要特征之一。相似可以帮助我们从局部来研究整体。

(4)图形相似提供了认识三角形的另一个途径,三角形相似的判别方法可以强化我们对三角形构成元素的认识。

(5)借助必要的工具和手段是学好图形相似的必要前提。平面图形初等变换之间的关系

(一)平移、旋转、反射变换是全等变换

(二)平移、旋转都可以由若干次反射(轴对称)的复合而得到。

对于平移、旋转和轴对称(反射)来说,虽然三者都是全等变换,但是,容易发现,其中,轴对称(变换)更为基本。

(1)对同一个图形连续进行两次轴对称,如果两个对称轴互相平行,那么,这两次轴对称的结果等同于一次平移;

(2)对同一个图形连续进行两次轴对称,如果两个对称轴相交,那么,这两次轴对称的结果等同于一次旋转,旋转中心就是两条对称轴的交点。反过来,对一个图形实施一次平移,都可以通过连续的两次轴对称来替代完成;对一个图形实施一次旋转,可以通过连续的两次轴对称来完成。

(3)任意一个合同变换至多可表示为三个反射的乘积。第五节演绎几何《原本》比亚里土多德的任何一本有关逻辑的著作影响都大得多。在完整的演绎推理结构方面,这是一个十分杰出的典范。正因为如此,自本书问世以来,思想家们为之而倾倒。公正地说,欧几里得的这本著作是现代科学产生的一个主要因素。科学绝不仅仅是把经过细心观察的东西和小心概括出来的东西收集在一起而已。科学上的伟大成就,就其原因而言,一方面是将经验同试验进行结合;另一方面,需要细心的分析和演绎推理。可以肯定地说,这并非偶然。毫无疑问,像牛顿、加利略、白尼和凯普勒这样的卓越人物所起的作用是极为重要的。也许一些基本的原因,可以解释为什么这些出类拔革的人物都出现在欧洲,而不是东方。或许,使欧洲人易于理解科学的一个明显的历史因素,是希腊的理性主义以及从希腊人那里流传下来的数学知识。对于欧洲人来讲,只要有了几个基本的物理原理,其他都可以由此推演而来的想法似乎是很自然的事。因为在他们之前有欧里得作为典范。

欧几里得对牛顿的影响尤为明显。牛顿的《数学原理》一书,就是按照类似于《原本》的“几何学”的形式写成的。自那以后,许多西方的科学家都效仿欧几里得,说明他们的结论是如何从最初的几个假设逻辑地推导出来的。许多数学家,像伯莎德罗素、阿尔弗雷德怀特海,以及一些哲学家,如斯宾诺莎也都如此。同中国进行比较,情况尤为令人瞩目。多少个世纪以来,中国在技术方面一直领先于欧洲。但是,从来没有出现一个可以同欧几里得对应的中国数学家。其结果是,中国从未拥有过欧洲人那样的数学理论体系(中国人对实际的几何知识理解得不错,但他们的几何知识从未被提高到演绎体系的高度)。直到1600年,欧几里得才被介绍到中国来。此后,又用了几个世纪的时间,他的演绎几何体系才在受过教育的中国人之中普遍知晓。

如今,数学家们已经认识到,欧几里得的几何学并不是能够设计出来的惟一的一种内在统一的几何体系。在过去的150年间,人们已经创立出许多非欧几里得几何体系。自从爱因斯坦的广义相对论被接受以来,人们的确已经认识到,在实际的宇宙之中,欧几里得的几何学并非总是正确的。便如,在黑洞和中子星的周围,引力场极为强烈。在这种情况下,欧几里得的几何学无法准确地描述宇宙的情况。但是,这些情况是相当特殊的。在大多数情况下,欧几里得的几何学可以给出十分近似于现实世界的结论。不管怎样,人类知识的这些最新进展都不会水削弱欧几里得学术成就的光芒。也不会因此贬低他在数学发展和建立现代科学必不可少的逻辑框架方面的历史重要性。爱因斯坦更是认为,“如果欧几里得未激发你少年时代的科学热情,那你肯定不是天才科学家。”由此可见,《原本》一书对人类科学思维的影响是何等巨大。

从数学教育的角度看,欧几里得的逻辑结构是串联型而不是放射型的,《原本》的每一节都那么重要,一节学不好,继续前进的路就断了,更令人头痛的是它没有提供一套强有力的、通用的解题方法。主要解题工具是三角形的全等和相似,而许多几何图形中不包含全等或相似三角形,因此,往往要作辅助线,从而几何被公认为难学的一门课程。值得一提的是,欧式几何几乎是历次中外数学课程教学改革的焦点。《原本》几乎包括了中小学所学习的平面几何、立体几何的全部内容。如此古老的几何内容,自然成了历次数学课程改革关注的焦点。其中,最为激进的,如法国布尔巴基学派主要人物狄奥东尼,甚至喊出了“欧几里得滚出去”的口号。但是,改来改去,欧几里得几何的一些内容,仍然构成了多数国家中小学数学几何部分的主要内容。有人称之为“不倒翁现象”。这是因为,欧氏几何从数学的视角,提供了现实世界的一个基本模型,非常直观地反映了我们人类的生存空间,刻画了我们视觉所观察到的物体形状及其相互位置关系。所以,这个模型的基本内容是学生能够理解和掌握的,而且应用广泛的基础知识。它比三种几何的关系

欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此,这三种几何都是正确的。在我们这个不大不小、不远不近的空间里,也就是在我们的日常生活中,欧式几何是适用的;在宇宙空间中或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些。

义务教育阶段几何课程内容的基本定位义务教育阶段几何课程设计的特点简析义务教育阶段几何课程设计的特点与以往的综合几何课程设计风格相比,《数学课程标准》下的几何已经将直观几何和实验几何的触角伸向了小学低年级,同时欧氏几何的体系和内容整体上还是基本保留的。只不过,具体的要求有所降低了,这种降低一方面体现在对推理几何的难度要求有所限较适合中小学生学习,也有利于引导中小学生从形的角度去认识我们周围的物体和生活空间。

尽管欧氏几何仍然具有难以替代的学习价值,但在以往的教学中,它又确实逐步暴露出一些问题,例如,内容体系比较封闭,脱离实际,教学代价太大等等。①这些问题需要数学课程的设计者与数学教学的实践者共同去面对、去解决。一条途径是教学法方面的改进。首先是内容的精简与演绎体系的通俗化。如精编一些具有实用价值和对继续学习发挥基础作用的内容,打破封闭的公理体系,扩大公理系统,降低证明难度等等。其次是突出几何事实与几何应用,重视几何直观,以及合情推理对于演绎推理的互补作用等非形式化策略。另一条途径是,用近现代数学的观点,高屋建瓴地处理传统的内容。其中几何图形的运动变换观点就是这样的重要观点之一。

从国际上数学课程改革的历程来看,第二次世界大战以后,特别是在上世纪60年代的“新数学”改革的浪潮中,将运动观点引入几何,成了一种时尚。确实,图形的变换是研究几何问题的有效工具,引进变换能使图形动起来,有助于发现图形的几何性质。相关的许多实验,有的因观点太高而失败,但也有许多成功的尝试。特别是平移、旋转以及轴对称、中心对称等观念已被不少国家的中小学教材所吸收,并放在比较重要的位置。如果说,集合与对应思想的渗透,在某种意义上给传统算术与代数注入了新的血液,那么,运动变换观点的渗透,则在一定程度上给欧氏几何提供了更高的数学观点和更新的研究视野。

对第五公设是否独立的研究导致了非欧几何的发现。

非欧几何,即非欧几里得几何,是一门大的数学分支,一般来讲,它有广义、狭义、通常意义这三个方面的不同含义。广义式泛指一切和欧几里得几何不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。罗巴切夫斯基几何

家罗巴切夫斯基发现非欧几何--罗氏几何为止,肯定了第五公设与欧氏系统的其余公理是独立无关的。黎曼几何

欧氏几何与罗氏几何中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。制,另一方面体现在,弱化了相似形和圆的证明部分。同时,弱化了的部分也还会在高中继续出现。

新理念下义务教育阶段几何课程设计的突出特点体现为:以“立体平面立体”为主要线索,强调与学生生活的联系;适当地拓宽活动领域,包括图形的认识,图形的变换,图形与位置等方面;以实际操作、测量、简单推理为具体处理方式,强调学生的直观体验学习的方法;注重发展的空间观念,发展对图形的审美能力;强调几何真理的发现和几何论证并举,主张建立在几何直观和丰富几何活动经验基础之上的几何推理的学习。

几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观不仅在“图形与几何”的学习中,而且在整个数学学习过程中都发挥着重要作用。

推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则证明(包括逻辑和运算)结论。在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性。

直观几何、实验几何课程设计特点与综合几何的差异

与综合几何相比,直观几何、实验几何有着更现实的意义和课程设计的特色:

1.不同的课程目标和价值取向

从课程设计的角度看,直观几何与实验几何更接近于认知发展取向的课程设计模式,而综合几何属于典型的学术主义价值取向的课程设计模式。

2.不同的教育学、心理学基础和不同的师生关系

以论证为主的综合几何课程设计,立足于行为主义心理学,主张师生之间建立“以教为主、以教促学”的师生关系。相比之下,直观几何、实验几何课程设计观认为,有意义的几何教学应当建立在学生的主观意愿和知识、经验基础之上,依赖学生的动手实践、自主探索和交流合作,教师在教学中的角色应该定位在学习的组织者、引导者和合作者、参与者,注意学生在学习中所处的不同文化环境、教室文化、社区文化、家庭文化及自身思维模式的共性与差异,师生之间、学生之间应该努力构建一种和谐、互动的新关系。

3.不同的课程设计风格

在课程论中,课程有学科型课程与经验型课程之分。除了学科型课程和经验型课程外,大多数课程介于两者之间。直观几何、实验几何属于典型的经验型课程,而综合几何属于典型的学科型课程。当前,我国实行的义务教育课程标准实验教科书大多介于学科型课程与经验型课程之间,只不过,有的更靠近后者,即比较“前卫”,而有的更靠近前者,“中规中矩”。

4.不同的教学要求

在直观几何、实验几何课程实施过程中,学生的直观感受和几何活动经验是学习的基本出发点和必不可少的载体,而且直观教学变得十分重要。在这种课程设计时,有的是在抽象的学科主线中不断闪现出内容丰富的情景问题,有的是把丰富的情景问题沿几何的主线逐步镶嵌与展开。几何学是研究平面图形的形状、大小和位置关系的科学,培养和提高学生识图、作图能力是学好几何的必要环节。因而,在直观几何、实验几何课程设计模式下,采用直观教学至关重要,可使学生一开始便进入到直观教学所创设的情尽管全国初中数学课程标准实验教科书彼此之间都有差异,但是,发展几何直观与推理

能力是普遍趋势。第三章统计与概率

准确理解数学、概率、统计之间的关系

(一)研究问题的出发点不同数学研究的对象是从现实生活中抽象出来的数和图形。数学研究问题必须有定义,即数学研究问题的出发点是定义,没有定义无法进行数学的研究。统计研究所依赖的是模型,构建一些模型的基础上进行研究。但是,统计与数学有着密切的联系,我们拿来数学的很多知识、思想方法作为统计分析的工具。

(二)研究问题的立论基础不同从数量和数量关系这个角度考虑,数学是建立在概念和符号的基础上的。而统计学是建立在数据和模型的基础上,虽然概念和符号对于统计学的发展也是重要的,但是统计学在本质上是通过数据和模型进行推断的。

境之中,耳濡目染,受到感染,教师若采用图片直观,便可展现情景,给学生以鲜明生动的形象,学生的注意力很快被吸引到图片所展示的情境中。如何理解初中几何及推理

新理念下义务教育阶段几何课程设计的突出特点体现为:以“立体平面立体”为主要线索,强调与学生生活的联系;适当地拓宽活动领域,包括图形的认识,图形的变换,图形与位置等方面;以实际操作、测量、简单推理为具体处理方式,强调学生的直观体验(几何课与实际活动课有天然的联系)学习的方法(即“操作”+“推理”);注重发展的空间观念,发展对图形的审美能力;强调几何真理的发现和几何论证并举,主张建立在几何直观和丰富几何活动经验基础之上的几何推理的学习。

初中阶段属于从直观几何、实验几何逐步过渡到综合几何、论证几何的关键阶段,七年级仍是直观几何、实验几何,但包含一点点说理,而九年级已经是综合几何、推理几何,虽然其公理体系与欧式公理体系有所不同。

在义务教育数学课程标准下,“图形与几何”主要内容有:空间和平面基本图形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。

在“图形与几何”的核心课程教学在于:帮助学生建立空间观念,注重培养学生的几何直观与推理能力。

如何理解初中几何的核心目标发展几何直观与推理能力

在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言描述画出图形等。几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观不仅在“图形与几何”的学习中,而且在整个数学学习过程中都发挥着重要作用。推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。演绎推理是从已有的事实出发,按照规定的法则证明结论。在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性。基于此,《数学课程标准》把认识或把握空间与图形作为主旋律,以图形的认识、图形与变换、图形与位置(坐标)、图形与证明四条线索展开空间与图形的内容。

(三)研究问题的方法不同与概念和符号相对应,数学的推理依赖的是公理和假设,是一个从一般到特殊的方法,而统计学的推断依赖的是数据和数据产生的背景,强调根据背景寻找合适的推断方法,是一个从特殊到一般的方法。

(四)研究问题的判断原则不同数学在本质上是确定性的,它对结果的判断标准是对与错,从这个意义上说,数学是一门科学,而统计学是通过数据来推断数据产生的背景,即便是同样的数据,也允许人们根据自己的理解提出不同的推断方法,给出不同的推断结果,统计学对结果的判断标准是好与坏,从这个意义上说,统计学不仅是一门科学,也是一门艺术。

数理统计方法的基本步骤建立数学模型,收集整理数据,进行统计推断、预测和决策。当然,这些环节不能截然分开,也不一定按上述次序,有时是互相交错的。

(1)模型的选择和建立。模型是指关于所研究总体的某种假定,一般是给总体分布规定一定的类型。建立模型要依据概率的知识、所研究问题的专业知识、以往的经验以及从总体中抽取的样本。

(2)数据的收集。其方法主要包括全面观测、抽样观测和安排特定的实验3种方式。全面观测又称普查,即对总体中每个个体都加以观测,测定所需要的指标。抽样观测又称抽查,是指从总体中抽取一部分,测定其有关的指标值。这方面的研究内容构成数理统计的一个分支学科。叫抽样调查。

(3)安排特定实验以收集数据,这些特定的实验要有代表性,并使所得数据便于进行分析。

(4)数据整理。目的是把包含在数据中的有用信息提取出来。一种形式是制定适当的图表,如散点图,以反映隐含在数据中的粗略的规律性或一般趋势。另一种形式是计算若干数字特征,以刻画样本某些方面的性质,如样本均值、样本方差等简单描述性统计量。

(5)统计推断。指根据总体模型以及由总体中抽出的样本,做出有关总体分布的某种论断。数据的收集和整理是进行统计推断的必要准备,统计推断是数理统计学的主要任务。

(6)统计预测。统计预测的对象,是随机变量在未来某个时刻所取的值,或设想在某种条件下对该变量进行观测时将取的值。

(7)统计决策。依据所做的统计推断或预测,并考虑到行动的后果而制定的一种行动方案。初中统计与概率的课程内容主要内容包括:

描述统计的进一步扩展----描述统计的基本目标在于以最简单而直观的形式最大限度地容纳有用的数据。

渗透数理统计思想----数理统计与描述统计的根本区别在于总体与样本概念的引入,它的基本思想是通过对样本的分析来推断总体的特性。这部分的一个核心的内容是抽样,如何抽样、抽样的过程、样本的多少是收集数据的一个关键问题。学习概率的初步内容-----包括运用列表、画树状图、制作面积模型、简单计算等方法得到一些事件发生的概率;通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值;通过大量丰富的实例,进一步丰富对概率的认识,并能解决一些实际的问题。

普查:为了一定的目的而对考察对象进行的全面调查,称为普查.总体:所考察对象的全体称为总体。个体:组成总体的每一个考察对象称为个体。抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查。样本:从总体中抽取部分个体叫做总体的一个样本。样本容量:样本中个体的数量叫样本容量。随机事件和样本空间

在一定条件实现后,可能产生也可能不产生的现象,人们称之为随机现象。具备以下三个特点的试验称为随机试验:

信息。众数只与其在数据中重复的次数有关,而且往往不是唯一的。但不能充分利用所有的数据信息,而且当各个数据的重复次数大致相等时,众数往往没有特别的意义。数据的离散程度

极差是指一组数据中的最大值减去最小值所得的差。它可以反映一组数据的变化范围。方差是指一组数据中的平均数与每一个数据之差的平方和的平均数。

样本数据的方差和标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。加权平均数的概念

加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,即一组数据的每个数乘以它的权重后所得积的总和。平均数称之为算术平均数,是加权平均数的一种特殊情况,加权平均数包含算术平均数,

(1)可在相同条件下重复进行;

〔2)每次试验可出现不同的结果,最终出现哪种结果,试验之前不能确定;

(3)事先知道试验可能出现的全部结果。随机事件随机试验的每一个可能的结果称为一个随机事件

样本空间由样本空间的子集可描述随机试验中所对应的一切随机事件。数据的收集

数据收集方法有两种:调查和实验。在现实生活中原来就有的数据,人们通过调查获得,例如,普查,即为一特定目的而对所有考察对象的全面调查;抽样调查,即为一特定目的而对部分考察对象作调查。三种常用抽样方法是:随机抽样法、分层抽样法和系统抽样法。

数据的随机性主要有两层涵义:

一方面,对于同样的事情,每次收集到的数据可能会是不同的;

另一方面,只要有足够的数据就可能从中发现规律。数据的整理和分析

数据分析观念主要体现在三个方面:

第一,了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析作出判断,体会数据中是蕴含着信息的;

第二,了解对于同样的数据可以用多种分析的方法,需要根据问题的背景选择合适的方法;

第三,通过数据分析体验随机性。

理解两种估计方法,一种是用样本的频率分布来估计总体的分布,另一种是用样本的集中趋势(平均数、中位数、众数)和离散程度(极差、方差、标准差)来估计总体的集中程度和离散程度。频数和频率

我们称每个对象出现的次数为频数,也称次数。频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则每个小组的频数与数据总数的比值。数据的集中趋势在统计学中是指一组数据向某一中心值靠拢的程度,它反映了一组数据中心点的位置所在。反映数据集中趋势的度量包括平均数、中位数、众数等。平均数一组数据的平均数就是用这组数据的总和除以这组数据的总个数得到的值。中位数,就是将这组数据从小到达排列后,位于正中间的数(或中间两个数的平均数)。众数,是指一组数据的众数就是这组数据中出现频数最多的数。平均数、中位数和众数的联系与区别

联系:从不同角度描述了一组数据的集中趋势。区别:计算平均数时,所有数据都参加运算,它能充分利用数据所提供的信息,但容易受极端值的影响。它应用最为广泛。中位数的优点是计算简单,只与其在数据中的位置有关。但不能充分利用所有的数据当加权平均数中的权相等时,就是算术平均数。

统计表不仅反映某一类事物的具体数据,而且还能说明有关数据之间的关系。统计图是借助于几何线、形(线段、长方形、三角形、圆形等)以及事物的形象等形式,显示收集到的数据信息,直观地反映其规模、水平、构成、相互关系、发展变化趋势和分布状况,即是根据统计数据所绘制的图形。条形图是以简单的几何图形,即等宽条形的长短或高低来比较数据所隐含信息的统计图示法分为单式条形图、复式条形图、分段条形图、对称条形图、距限条形图、累积条形图等。

直方图有两种,频数直方图和频率直方图。频数直方图与频率直方图既有联系,又有区别。

扇形图用圆和扇形分别表示关于总体和各个组成部分数据的统计图叫做扇形统计图。扇形图能直观地、生动地反映各部分在总体中所占的比例。

扇形统计图具有四个特点:

一是利用圆和扇形来表示总体和部分的关系,

二是圆代表总体,各个扇形分别表示总体中不同的部分;

三是扇形的大小反映部分占总体的百分比的大小,

四是各个扇形所占的百分比之和为1;最后,在不同的统计图中,不能简单地根据百分比的大小来比较部分量的大小。折线统计图

用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,折线统计图不但可以表示出数量的多少,还能够清楚地表示出数量的增减变化情况,并且可以进行简单的预测。折线统计图可分为单式折线图或复式折线图。统计是对随机现象统计规律归纳的研究,而概率是对随机现象统计规律演绎的研究,在解决实际问题时,二者是相辅相成、互相关联的

随机事件的概率,实质上是指在客观世界中,这个事件发生可能性大小的一个数量刻画。

概率的定义

频率是指事件发生的次数在全部试验次数中占的比例,所以频率能够反映该事件发生的可能性大小。即一般地,在大量重复进行同一试验时,事件A发生的频率总是趋近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).概率的公理化定义样本点全集叫做必然事件,空集叫做不可能事件。正确理解随机性与概率

(1)随机性和规律性。

(2)概率和机会。从某种意义说来,概率描述了某件事

情发生的机会

(3)有些概率是无法精确推断的。

(4)有些概率是可以估计的。随机结果也具有规律,而且有可能通过试验等方法来推测其规律。我们就是要通过观测数据,在随机性中寻找用概率和数学模型描述的规律性

小概率原理是统计检验(统计中的反证法)的基础和依据。小概率原理是指在一次试验中,小概率事件几乎不可能发生。《数学课程标准》认为,“统计与概率”应当是初中课程内容的重要组成部分。不仅如此,《数学课程标准》将“统计与概率”内容从第一学段连续编排到初中,并且规定,在初中,学生将从事数据的收集、整理与描述的过程,体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的方法,进一步体会概率的意义,能计算简单事件发生的概率。《大纲》没有涉及“概率”内容,仅仅在初中阶段引入“统计初步”,并且将“统计初步”放入“代数的第(十三)部分”在《大纲》中,“统计初步”的定位是:使学生了解统计的展这一活动,有以下几个步骤:

第一,学生观察一件物体或一种现象,或者操作某些学具。

第二,学生在研究所观察的物体或现象的过程中进行思考,与同伴进行讨论和交流,以弥补他们在单纯的观察和操作活动中的不足。

第三,老师按一定的顺序给学生们推荐活动,学生可从中作出选择并实施这些活动,学生在选择中有较强的自主性。

第四,这一活动可以以课内外相结合的形式进行,学生每周至少花两个小时进行同一个主题的活动,并应保证这些活动在整个学习进程中的持续性和稳定性。

第五,每个学生都记录活动过程。通过这一活动,学生逐渐学会操作,同时加强和巩固口头和书面表达能力,发展解决问题的能力,增进对数学的理解力。如何理解数学研究性学习

思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一些简单的实际问题。简单的平均数和加权平均数

所谓加权平均数,是指各个数据的“份量”不同,有的重要些,有的轻些,将它们的重要性用“权重”表示,即加上各个数据在全体数据中占有的比例(频率)再作和。数学期望的定义事前预期的好处,就叫做这件事情的期望值。第四章实践与综合

设置“实践与综合”领域目的在于体现其桥梁作用(即,数学不同领域之间的桥梁作用以及数学与外部之间桥梁作用)和综合价值,综合运用数学知识、技能、思想、方法等解决现实问题,帮助学生积累直接的数学活动经验,发展学生的综合能力。关于“实践与综合”的教育价值和课程目标

教育价值实践与综合领域的存在,沟通了现实世界中的数学与课堂上的数学之间的联系。另一方面,综合应用数学解决问题也必将给学生的学习方式带来改变。使学生发展了意志力、自信心和不断质疑的态度,发展了运用数学进行思考和交流的能力。

课程目标《全日制义务教育数学课程标准》对这个领域的课程设计提出了的总的要求:帮助学生综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题,以发展他们解决问题的能力,加深对“数与代数”、“图形与几何”、“统计与概率”内容的理解,体会各部分内容之间的联系。“实践与综合”在不同阶段不同的呈现形式第一学段以“实践活动”为主题,第二学段以“综合应用”为主题,第三学段(即初中阶段)以“课题学习”为主题。

在初中数学中,课题学习的主要形式有三种基本方式:

数学小调查。数学小调查是指学生在教师指导下,从学习生活和社会生活中选择和确定调查专题,主动获得信息、分析信息并做出决策的学习活动。数学调查可以包括三个阶段,第一,进入问题情境阶段;第二,收集信息的阶段;第三,表达和交流阶段。这种活动具有开放性、问题性和社会性的特点。

小课题研究。活动基本过程如下:各小组确定活动目标;根据目标确定本组活动内容;在老师指导下实际调查。合作交流。

动手做(Handson)的活动。意思是动手活动,目的在于让学生以更科学的方法学习知识,尤其强调对学生学习方法、思维方法、学习态度的培养。基本过程是:提出问题动手做实验观察记录解释讨论得出结论表达陈述。具体地说,开

数学研究性学习主要针对我国中学教育中出现的若干弊端,为实施以创新精神和实践能力为重点的素质教育而提出来的,其根本目的是让学生亲历研究过程,获得对客观世界的体验和正确认识,通过自由、自主的探究过程,综合性地提高整体素质和能力。因此,研究性学习的重点在“学习”,研究是手段、途径,而不是目的。数学研究性学习的内涵

以培养学生的数学创新意识和实践能力为目的,它主要通过与数学学科内容相关的课题,在教师的指导下,学生为主体地参与、体验问题提出和解决的全过程。使学生不但发展了思维能力,而且逐渐领悟到数学科学研究的基本过程和方法,提高学生的科数学研究性学习的目的

1.让学生经历科学研究的过程,获得亲身参与研究和探索的体验。

2.了解科学研究的方法,提高发现问题和解决问题的能力。

3.学会与人沟通和合作,学会分享。合作的意识和能力,是现代人所应具备的基本素质,而研究性学习提供了一个有利于人际沟通与合作的良好空间。

4.增强探究和创新意识,培养科学态度、科学精神和科学道德。在研究性学习的过程中,学生不可避免地会遇到一系列的问题和困难,学生必须学会从实际出发,通过认真踏实地探究,事实求是地得出结论,并且养成尊重他人的想法和成果的正确态度,同时培养不断追求的进取精神、严谨的科学态度、克服困难的意志品质等。

5.培养学生对社会的责任心和使命感形成积极的人生态度。

6.促进学生学习,掌握和运用一种现代学习方式。

7.激活各科学习中的知识储备,尝试相关知识的综合运用。8.促进教师教学观念和教学行为的变化,提升教师的综合素质,培养学生创新精神和实践能力,推进素质教育的全面实施。

初中数学研究性学习主题分为建模探究型、图表探究型、调查探究型、开放探究型四种类型。

(1)建模探究型:以学生动手操作、合作探讨、设计制作模型为主,教师给予指导、总结、评价。

(2)图表探究型:以学生观察、分析数学图表、探究解决问题的方法为主,教师提示结合相关知识分析、探究、解决问题。例如,数学图表的制作:“制作人口图”。

(3)开放探究型:以学生自主分析、小组讨论交流、大胆猜想、探究论证为主,教师给予必要的概括、提升和拓展。例如,趣味数学问题:猜想、证明、拓广。

(4)调查探究型:以学生调查实践、自主分析、探究实践的方式和方法为主,教师适时引导、提示、总结。数学研究性学习的特点

1.探究性。探究是人类认识世界的一种基本方式,处于基础教育阶段的初中生对外部

世界仍充满强烈的新奇感和探究欲,数学研究性学习正好适应学习者个体发展的需要和认识规律。

2.全员参与性。研究性学习主张全体学生的积极参与,它有别于培养天才儿童的超常教育。全员参与的另一层含义是共同参与。研究性学习的组织形式是独立学习与合作学习的结合,其中合作学习占有重要的地位。

3.开放性。数学研究性学习是一种开放性、参与性的教学形式,为了研究有关生活中的数学问题或从数学角度对其它学科中出现的问题进行研究。

4.过程性。要求学生把自己所得出的结论运用到现实生活中去,解决现实生活中涉及到的数学问题,强调学生参与的过程。

5.应用性。学以致用是研究性学习的又一基本特征。研究性学习重在知识技能的应用,而不在于掌握知识的量。

6.体验性。研究性学习不仅重视学习过程中的理性认识,如方法的掌握、能力的提高等,还十分重视感性认识,即学习的体验。数学研究性学习的实施保持和进一步提高学习数学的积极性。

(3)在实施过程中,要采取有效的手段对学习活动进行监控;指导学生写好研究数学日记,及时记载研究情况,真实记录个体体验,为以后进行和评价提供依据。

(4)要争取家长和社会有关方面的关心、理解和参与,与学生一起开发对实施研究性学习有价值的校内外教育资源,为学生开展研究性学习提供良好条件。

(5)能够根据学校与班级实施研究性学习的不同目标定位和主客观条件,在不同时段选择不同的切入口,形成不同年级的操作特点。

数学模型一般是指由数字、字母或其它数学符号组成的,描述现实对象(原型)数量规律和空间特征的数学结构。数学模型可以叙述为:对于现实世界的一个特定对象,为了实施要求:

①全员参与,而非只关注少数数学尖子学生竞争,给每个学生有锻炼与参与的机会;

②任务驱动。要向学生提出有明确具体要求的任务,发挥它对学生学习过程的引导作用;

③重在学习过程而非研究的结果;

④重在知识技能的应用而非掌握知识的数量;

⑤重在亲身参与探索性实践活动,获得感悟和体验,而非一般地接受别人传授的经验;

⑥形式上灵活多样,强调课内外结合。数学研究性学习模式有三种:

(1)理论实践模式。是指师生在共同学习研究性学习理论的基础上,学生运用数学理论来研究、解决数学问题,体验研究性学习课程理论的价值,提高综合能力的一种教学模式。

(2)数学问题探讨模式。师生围绕数学问题的分析与探讨展开的教学活动,构成了问题探讨教学模式。其基本理念在于:以激励、强化学生在教学过程中的主体参与意识为着眼点,以帮助学生学会学习,学会发现和分析问题,培养学生创造性解决问题的能力为宗旨,创设一种开放而又活泼的学习氛围。其教学策略是:将问题或案例呈现给学生,引导学生共同探讨,构建师生平等、互动的学习环境。

一般来说,教师要选择典型的数学问题或案例,不可平铺直叙地搬给学生,而要创造性地加以取舍,主动设疑,引导学生学会思考,提高学生的学习数学能力。

(3)数学课题研究模式。数学课题研究模式是指教师提供课题或由学生根据兴趣设计研究课题,并在教师的指导下自主探索、实施研究计划、完成课题目标、提高社会实践能力的一种教学模式。

组织形式有三种类型:小组合作研究、个人独立研究、全班集体研究。其中一致认为小组合作研究是最基本、最有效、经常被采用的一种组织形式。数学研究性学习实施的一般程序

一般可以分为三个阶段:

(1)进入问题情境阶段(准备阶段)。主要任务是背景知识的准备;指导学生确定数学研究课题;组织课程小组、制定研究方案。

(2)实践体验阶段(实施阶段)。本阶段学生要进入具体的解决问题过程。

(3)表达交流阶段(结题阶段)。学生将自己或小组经过实践、体验所取得的收获进行归纳整理、总结提炼,形成书面或口头报告材料,得出结论,并进行成果交流和总结反思。数学研究性学习实施中的教师指导

(1)在初中不同的学段和年级,教师的指导工作内容和方法应该有所不同。

(2)在数学研究性学习实施过程中,教师要及时了解学生开展活动的情况,有针对性地进行指导、点拨;要组织灵活多样的交流、研讨活动,促进学生自我教育,帮助他们

一个特定目的,根据特有的内在规律,做出一些必要的简化假设后,运用适当的数学工具,得到的一个数学结构。数学建模教学的目

使学生体会数学与自然及人类社会的密切联系,体会数学的应用价值,培养数学的应用意识,增进对数学的理解和应用数学的信心;使学生学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中的问题,进而形成勇于探索、勇于创新的科学精神;使学生学会以数学建模为手段,激发学习数学的积极性,团结合作,建立良好的人际关系、相互合作的工作能力;以数学建模方法为载体,使学生获得适应未来社会生活和进一步发展所必需的重要数学事实以及基本的思想方法和必要的应用技能。数学建模的教学意义

1.培养学生合作学习的能力合作能力是信息社会中每个人必须具备的基本素质。

2.培养学生处理信息的能力数学建模活动则为学生学习如何选择信息、获取信息和加工信息提供了一个有效的途径。

3.有利于学生形成正确的数学观数学建模活动的开展使学生形成正确的数学观成为可能。

4.有利于学生体验数学与生活、数学与其它学科的联系

5.激发学生的数学学习兴趣

6.发展学生的创新意识数学建模的具体实施1.选题

鼓励学生自主提出问题,可以从以下几个方面人手:

①让学生了解选题的重要性和基本要求,

②指导学生结合自己的生活经验寻找课题,也可由教师介绍往届学生的选题并加以点评,或者请本班同学介绍自己的选题计划,教师和学生一起分析其可行性,

③教师创设一个问题环境,引导学生自主提出问题、确定课题。这时教师的指导应该是有启发性的,不要代替学生确定课题,而是启发学生自己去延展、开拓问题链,让学生自己提出要解决的问题和解决问题的方案。

2.实施

在课题学习的实施中,我们强调开放学生的思维,强化过程体验,师生和生生的情感交流和成果共享。

3.指导

在课题学习中,教师如何指导学生,这是一个令不少教师感到困惑甚至苦恼的问题。课题学习过程中,问题形式与内容的变化,问题解决方法的多样性、新奇性,问题解决过程的不确定性,结果呈现层次的丰富性,无疑是对参与者创造力的一种激发、挑战和有效的锻炼。教师在陌生的问题面前感到困难,失去相对于学生的优势是自然的、常常出现的。

4.评价

评价过程具体涉及以下几个方面:

①调查、求解的过程和结果要合理、清楚、简捷;

②要有自己独到的思考和发现;

③能够恰当地使用工具(如网络和计算工具);

④采用合理、简捷的算法;

⑤提出有价值的求解设计和有见地的新问题;

⑥发挥每个组员的特长,合作学习得有效果。5.建立和扩张资源

对教育资源的认识应该走出静态的误区,要看到身边许多动态的教育教学资源。此外,通过查找相关的刊物和网站也可以发现大批的可用资源。我们还应有意识地建立自己个性化的信息资源库,它包括:前几届学生做的课题成果,如论文、研究报告、程序、制作的作品,以及活动过程的照片、研究课的录音或录像、其它学校学生的优秀成果等。生和发展而成。这种抽象可以脱离具体的实物模型,形成一种具有层次性的体系。形式化使用特定的数学符号来表示数学概念,使概念形式化。逻辑化在一个特定的数学体系中,孤立的数学概念是不存在的,它们之间往往存在着某种关系;这些关系称之为数学概念的逻辑关系。这种逻辑关系使得数学概念系统化、公理化。简明化数学概念具有高度的抽象性,借助数学符号语言,使得一定事物的本质简明的形式表现出来,这种简明化使人们在较短时间内领会。概念的外延与内涵

概念反映了事物的本质属性,也就反映了具有这种本质属性的事物。

一个概念所反映的对象的总和,称为这个概念的外延是指适合这个概念的一切对象,即符合这一概念所有对象的集合。换言之,是指这个概念的延用范围。一个概念所反映的对象的本质属性的总和称为这个概念的内涵。概念的内涵是说一个概念所反映的事物培养学生的数学应用意识、数学应用能力

实际教学中要强调学生的自主探索、合作交流和操作实践等学习方式。

(1)充分发挥学生的主体性。在学习过程中,教师可以向学生推荐活动,让学生在选择中有较强的自主性;同时,让学生独立思考和合作交流,在此基础上教师进行有针对性的指导。

(2)强凋学生学习方法、思维方法、学习态度的养成,关注学生的学习过程。课题学习活动强调学生主动学习,不宜强调对知识的学习,而且更重要的是强调学生对学习方法、思维方法、学习态度的养成。

(3)创设恰当的问题情景,鼓励学生思考方法的多样化。在课题学习活动过程中,教师应当鼓励与尊重学生的独立思考,引导学生进行讨论与交流,培养学生良好的思考习惯和合作意识。鼓励算法多样化,对培养学生的创新意识与创新思维是十分必要的。

(4)对课题学习的评价应该以质的评价为主。一般说来,对学生实践与综合应用活动的评价要强调过程性评价。重点在于促进学生创新精神的培养和实践能力的提高,具备与人沟通及有良好的人际交往能力。而不是把学生贴上优秀、良好、不及格的标签。数学研究性学习的评价对建立学生发展性评价有哪些有益的启示

(1)研究性学习评价更重视过程。研究性学习评价学生研究成果的价值取向重点是学生的参与研究过程。

(2)研究性学习评价更重视理解中的应用。强调的是学生把学到的基础知识、掌握的基本技能,应用到实际问题的提出和解决中去既促进学生对知识价值的反思,又加深对知识内涵理解和掌握,形成知识的网络和结构。3)研究性学习评价强调学生在探究过程中的体验。

(4)研究性学习评价更重视全员参与。研究性学习的价值取向强调每个学生都有充分学习的潜能,为他们进行不同层次的研究性学习提供了可能性,也为个别化的评价方式创造了条件。第五章初中数学的逻辑基础

客观事物都有各自的许多性质,或者称为属性。经过比较、分析、综合、概括,抽象出一种事物所独有而其它事物所不具有的属性,称为这种事物的本质属性。反映事物本质属性的思维形式叫做概念。数学研究的对象是现实世界的空间形式和数量关系。反映数学对象的本质属性的思维形式叫做数学概念。数学概念具有抽象化、形式化等鲜明的特点。

抽象化数学概念反映一类事物在数量关系和空间形式方面的本质属性。有些可以直接从客观事物的空间形式和数量关系反映得来,而大多数概念排除对象具体的物质内容,抽象出内在的、本质的属性,甚至在已有数学概念的基础上,经过多级的抽象过程才产的本质属性。

概念的内涵和外延之间相互依存,二者是一对矛盾,共处于统一体的概念之中。它们之间有着相互依存、相互制约的关系。概念反映了事物的本质属性,也就反映了具有这种本质属性的事物。一个概念所反映的对象的总和,称为这个概念的外延。一个概念所反映的对象的本质属性的总和称为这个概念的内涵。一个概念的内涵和外延分别从质和量两个方面刻划了这个概念,每个概念都是其内涵与外延的统一体.概念的内涵严格确定了概念的外延,反之,概念的外延完全确定了概念的内涵。概念的外延和内涵是主观对客观的认识,由于人们对客观事物的认识是发展变化的,概念的外延和内涵必然相应地发生变化,但是在发展变化的过程中有其相对的稳定性.在数学科学体系的确定的阶段,每一个数学概念的外延和内涵都是确定的,二者是相互确定的。初中数学概念的特点

1、初中数学概念并非都是通过定义给出的

2.初中数学概念的层次性数学概念本身具有层次性。

3.数学概念是理想概念

4.数学概念是“过程”与“对象”的统一体数学概念之间的关系

1.同一关系两个外延完全相同的概念之间的关系,叫做同一关系。同一关系,叙述上常用连接词“即”、“就是”等表示。在一个判断过程中,具有同一关系的两个概念可以互相代替。

2.交叉关系两个外延部分相同的概念之间的关系,叫做交叉关系.叙述上常用“有的”、“有些”等表示。

3.从属关系两个外延具有包含关系的概念之间的关系,叫做从属关系。其中外延范围大的概念A叫做上位概念或种概念,外延范围小的概念B叫做下位概念或类概念。4.矛盾关系两个概念的外延互相排斥,但外延之和等于它们最邻近的种概念的外延,这样两个概念之间的关系,叫做矛盾关系。

5.对立关系两个概念的外延互相排斥,但外延之和小于它们最邻近的种概念的外延,这样两个概念之间的关系,叫做对立关系。

把一个属概念分成若干个种概念,揭示概念外延的逻辑方法叫做概念的划分。在数学中常用划分把概念系统化。正确的划分应符合下列条件:

第一,所分成的种概念之间应是全异关系,即任两个种概念的外延的交集应是空集;第二,划分应是相称的,即是说所分成的全异种概念的外延的并集等于属概念的外延;第三,每次划分都应按照同一个标准进行。在一次划分中用不同的根据就造成了混乱;第四,划分不应越级。应把属概念分为最邻近的种概念

数学概念的定义与要求

定义是建立概念的逻辑方法人们在认识事物的过程中,经过抽象,形成概念,就要借助语言或符号,加以明确、固定和传递,这就要给概念下定义。定义的功能是为了明确讨论问题的对象。常常是在抽象出事物的本质属性之后,运用逻辑的方法和精练的语言或符号揭示出对象的本质属性。常用的定义方法:

1.“种+类差”定义法属概念加种差定义法就是,用被定义概念最邻近的属概念,连同被定义的概念与同一属概念下其它种概念之间的差别(即种差),来进行定义的方法。2.发生式定义法不直接揭示概念的基本内涵或外延,而是通过指出概念所反映的对象产生的过程,由此来定义概念的方法,叫做发生式定义法。

3.外延定义法这是一种给出概念外延的定义法,又叫归纳定义法。真时,P假;当P假时,P真。

2.选言判断。选言判断是由两个或两个以上判断用连接词“或者”构成的判断,一般记成AVB,读作“A或B”。

3.联言判断。联言判断是用连接词“且”构成的判断,表明几个事物情况都存在,一般记成A∧B,读作“A且B”。4假言判断。假言判断又叫蕴含判断,它是判断P为另一判断Q存在条件的判断,P、Q分别叫做该假言判断的前件和后件(或题设和题断,条件和结论),一般用“若……,则……”,或“如果……,那么……”的形式表示,记成P→Q。解命题的涵义

关于数学对象及其属性的判断叫做数学判断。判断要借助于语句,表示判断的语句叫命题。

4.约定式定义法由于某种特殊的需要,通过约定的方法来定义的。

5.关系定义法这是以事物间的关系作为种差的定义,它指出这种关系是被定义事物所具有而任何其他事物所不具有的特有属性。

此外,中学数学中还有描述性定义法(如现行中学数学中关于等式、极限的定义)、递推式定义法(如n阶行列式、n阶导数、n重积分的定义),借助另一对象来进行定义(如借助指数概念定义对数概念)等等。定义数学概念的基本要求

1.定义应当相称。即定义概念的外延与被定义概念的外延必须是相同的,既不能扩大也不能缩小2.定义不能循环。即在同一个科学系统中,不能以A概念来定义B概念,而同时又以B概念来定义A概念。

3.定义应清楚、简明。定义中列举的属性对于揭示概念反映的对象的本质属性来说应是必不可少的。所谓必不可少是指每一个属性都是独立的,不能由列举出的其它属性推出。

定义要揭示概念所反映对象的本质属性,而否定形式一般不能做到这一点。数学概念的形成

数学概念形成是从大量的实际例子出发,经过比较、分类,从中找出一类事物的本质属性,然后通过具体的例子对所发现的属性进行检验与修正,最后通过概括得到定义并用符号表达出来。

数学概念形成的过程有以下几个阶段:

1.观察实例。

2.分析共同属性。分析所观察实例的属性,通过比较得出各实例的共同属性。

3.抽象本质属性。从上面得出的共同属性中提出本质属性的假设。

4.确认本质属性。通过比较正例和反例检验假设。确认本质属性。

5.概括定义。在验证假设的基础上,从具体实例中抽象出本质属性推广到一切同类事物,概括出概念的定义。

6.符号表示。

7.具体运用。使新概念与已有认知结构中的相关概念建立起牢固的实质性联系。把所学的概念纳入到相应的概念体系中。

判断是人们对事物情况有所肯定或否定的比概念高一级的思维形式。判断是属于主观对客观的认识,因此,判断有真有假,其真假要由实践来检验,在数学中要进行证明。如实反映事物情况的判断,叫真判断;不符合事物情况的判断,叫假判断。在一个判断中,如果不包含其他的判断,叫做简单判断。简单判断又分为性质判断和关系判断。复合判断是由两个或两个以上的简单判断用连接词构成的判断。

1.负判断。负判断是用连接词“非”构成的判断,一般记为┑P,读作“非P”,当P如何理解命题的分类

所谓性质命题,是指断定某事物具有(或不具有)某种性质的命题。性质命题由主项、谓项、量项和联项四部分组成。关系命题关系命题是断定事物与事物之间关系的命题,关系命题由主项、谓项和量项三部分组成.复合命题命题真值的概念。

对于命题A、B,如果A是一个真命题,我们就说A的真值等于1,记成A=1;如果B是一个假命题,我们就说B的真值等于0,记成B=0。一个命题或真或假,而不能既真又假。因此,一个命题的真值只能是1或0,不能既为1,又为0,或非l又非0。

复合命题的分类

复合命题由于所采用的连接词不同,可分为下列五种形式。

否定式。给定一个命题A,用连接词“非”组成一个复合命题“非A”,

析取式。给定两个命题A与B,用连接词“或”组成一个复合命题“A或B”,合取式。给定两个命题A与B,用连接词“且”组成一个复合命题“A且B”蕴含式。给定两个命题A与B,用连接词“若……,则……”组成一个复合命题“若A则B”,记作AB

等值式。给定两个命题A与B,用连接词“等值”组成一个复合命题“A等值B”,记作“AB”公理与定理

不加证明而被承认其真实性的命题叫做“公理”。原始概念和公理是组成数学理论的主要基础。公理虽然不能加以证明,但有其合理性,它是从大量客观事物与现象中抽象出来的,符合客观规律。

任何公理体系都必须满足相容性、完备性和独立性。相容性是指该体系的各公理之间没有矛盾。完备性是指该分支的形成除了相应的公理体系外,不依赖于任何别的东西。独立性是指该体系中各公理是相互独立的,没有一个可以由其他公理推出。独立性对整个公理体系而言,具有锦上添花的作用。

经过证明为真实的命题叫做定理,可由定理直接得出的真命题叫做推论。推论和定理的含义没有什么本质的区别。一个定理的逆命题、偏逆命题都未必为真,如果证明了是真实的,则分别称为原定理的“逆定理”、“偏逆定理”。形式逻辑的基本规律

1.同一律:在同一时间、同一地点、同一思维的过程中,所使用的概念和判断必须确

定,且前后保持一致。公式是:A→A,即A是A。它有两点具体要求:一是思维的对象应保持同一。二是表示同一事物的概念应保持同一。

2.矛盾律:在同一时间,同一地点,同一思维的过程中,不能既肯定它是什么,又否定它是什么,即在同一思维过程中的两个互相矛盾的判断,不能同真,必有一假。公式是:A∧A,即A不是A。

3.排中律:在同一时间、同一地点、同一思维的过程中,对同一对象,必须作出明确的肯定或否定的判断。即在同一思维过程中,两个互相矛盾的概念或判断不能同假,必有一真,而排除第三种可能。公式是:A∨,即A或。

排中律和矛盾律既有联系,又有区别。其联系在于:它们都是关于两个互相矛盾的判断,都指出两个矛盾判断不能同时并存,其中必有一个是假。但如何进一步确定谁真谁假,它们本身都无能为力,只有借助其他知识,进行具体分析,才能正确地予以回答。3.演绎推理是一种由

数学培训总结【第七篇】

xx年9月24日―25日,我参加了南宁高中新课改精品课程展示活动,通过两天的学习,给我解决了好多问题。在一开始都不知道在新课改数学中,我应该提前掌握的知识有哪些?脑子的储备量应该是多少?回首培训过程,大家两天培训情景依然浮现在我眼前,专家们精辟的点评依旧回荡在我脑海。这次培训受益匪浅,通过这两天紧张有序的培训,使我对新课改理念有了全新的认识。在这次培训中,我认认真真地吸收和学习专家的报告,全身心的投入到了专家的精品课程展示课活动中,学习了课程团队专家们精心选择、精心编辑、精心打造的“课程简报”,并积极参与和专家面对面的研讨,在思想上有了观念的更新,了解到新课程的基本理念,在这次新课程培训中学习了以下这么几个方面:

1.怎样整体把握高中数学新课程。

2.高中数学新课程与学生学习。

3.高中新课程的教学设计。

4.高中数学新课程新增和变化内容的教学思考。

5.高中新课程中可选的内容的分析和思考。

6.评价与教学的关系。课程的改革既是基础教育的改革,也是推进素质教育的改革,我们要以培养学生的实践创新能力为目的,把学生从观察现象改变为探索现象的观念上来,培养学生分析问题解决问题的能力,构建一个探索性的学习空间,以适应新时代的需要。下面就这两天的学习谈谈自己的学习体会。

一、新课改需要有新思想

通过两天的学习,我认为要想更快更好的进入新课改,首先得从思想上进行转变。只有从思想上完全接受了新课改,才能更好的投入到新课改当中。刚开始,包括我自己在内的好多老师对这次新课改还持有一点抵触情绪,但随着这两天培训的不断进行,我开始慢慢的接受了新课改,思想上进行了一个非常大的转变。我们学习了怎样整体把握高中数学新课程,新高中数学课程在结构和内容方面也有比较大的调整,不同的课程有不同的功能,为不同发展方向的学生服务。整体的把握高中数学课程是我们打好基础的重要组成部分。函数思想、几何思想、算法思想、运算思想等都是高中数学课程的主线,它们彼此之间又有着密切的联系,是贯穿整个高中数学课程最基本最重要的'数学思想,这些主线可以把高中数学知识编织在一起,构成知识网络。新旧教材的变化要求我们整体把握高中数学课程,了解一些模块的设置涵义,这有助于发现数学课程的内在联系,使整体的数学素养得到提升。专家们围绕高中数学新课程新增加的内容与变化的内容及可选内容进行的一些思考和分析,让我们对新教材有了更加深刻的认识。

二、培训专题报告很精彩

在这两天的培训当中,我们一个听取了四位专家的四场报告以及六节精品课程的展示活动。通过专家们的专题报告讲解,是我对新课改的每个模块有了一定的认识。在学习当中,来自好多学校的老师对相关专题还进行了简要的教学设计的分析和教学活动的讲解,使得我们这些刚开始参加新课改的教师们对新课改的理念有了初步的认识。我们学习了怎样在课堂内外特别是课外培养学生好的学习习惯、激发学生兴趣、引导学生走向创新,数学教学应该关注学生学习的哪些要素,探讨老师的教学行为怎样能够促成上一课目标的实现。为了这些目标的实现我们需要重视教学设计,专家给我们展示了一些优秀的教学设计,对教学设计的理念及相关问题进行了探讨,主要是四个方面:问题的设计,过程的设计,活动的设计,语言的设计。每一个环节都决定了一节课的成败。最后我们研究了教学评价的问题。如何改变现有的评价机制,以适应课程改革,专家通过一些案例给了我们有益的启示。新课程的一个重要理念是要让每一个学生得到更好的发展,通过这次培训,我们要实现这个目标,我认为我们第一要研究教材,在教材之上的是要研究数学内容;第二要研究学生,要研究我们用什么手段、什么样的程序、什么样编排、什么样的情境能够激发学生对数学知识的理解和兴趣?第三要研究突破点,即把教材和数学内容和学生结合起来来找到自己“研”的突破点。我们一定要心里永远装着学生,以学生为主题设计方案,为培养高素质的数学人才而努力。

三、专家点评和解答精辟到位

在这段时间内,参加新课改的老师除了我们这些一线的高中教师之外,还有四位新课改的研究专家帮助我们,他们不仅是新课改的研究者,也是新课改的实施者。我们的学习不但有专家们对新课改的报告解决,还有专家的实际课程展示。各位专家们对自己的课程设计结合报告点评非常到位,对我们提出的问题也能进行面对面的讨论和答复。正是因为有了可与这些专家给我们搭建了新思考这样一个学习和交流的平台,才使得我们能够扎实有效的进行新课改的培训学习。

四、教研活动丰富多彩

在培训的过程中,我们学校的老师们每天早上和下午都来到学校进行新课改的培训和学习。在听完每一节精品课程和报告的同时,我们周围坐在一起的老师还对相关内容进行了激烈的讨论,这对于我们这些年轻的教师提供的非常宝贵的经验,这样的讨论也使得新课改的思想进入了我们每一位教师的心中,有利于使我们更快的进入到新课改中。通过本次新课改的学习,使我认识到在今后的在教学中一定要多培养主动学习意识了,要把原来的被动接受变成主动探究,只有这样才能更好的学习新的课程。教师是新课改的具体执行者,执行者的意识和素质是非常关键的,所以我们这些老师一定要认真学习新课改的方方面面,先做一名合格的新课改教师,再争取做一名优秀的新课改教师。尽管培训已经结束了,但我们的学习还在继续,我们的挑战才刚刚开始。以后新课程的路途还很长,责任就在我们身上,我们是新课程的探索者。我会尽我的最大努力,倾注我的全部精力来迎接挑战,实现新课程目标的实施。我相信通过这次培训和今后不断的新课改学习,我们一定会站好这一班岗,一定会将新课改进行到底。

五、重视教学反思

反思是教师以自己的职业活动为思考对象,对自己在职业中所做出的行为以及由此所产生的结果进行审视和分析的过程。教学反思被认为是“教师专业发展和自我成长的核心因素”。新课程非常强调教师的教学反思,按教学的进程,教学反思分为教学前、教学中、教学后三个阶段。在教学前进行反思,这种反思能使教学成为一种自觉的实践;在教学中进行反思,即及时、自动地在行动过程中反思,这种反思能使教学高质高效地进行;教学后的反思——有批判地在行动结束后进行反思,这种反思能使教学经验理论化。教学反思会促使教师形成自我反思的意识和自我监控的能力。

六、建议和希望

希望精品课程展示这样的教师交流的活动能继续存在,这样可以使老师们能积极的交流新课改的经验和思想,也希望各位专家能在今后的新课改学习中给我们更多的实际操作的展示,使我们能够把理论与实际相结合,更快的成长起来。

数学培训总结【第八篇】

通过这些天的培训,我认为教学质量的提高,关键是创新能力的提高,在学校的教育中,培养学生的创新精神和实践能力就成为素质教育重要的价值取向,我觉得探究教导要利于培养学生独立思考的习惯,能激发学生的创新意识,开发学生的创新能力,全面提高学生的科学文化素质,拓宽学生获取信息的渠道,开展探究教学模式成为教学教导的必然趋势。

愉快而繁忙的的高中数学新教师培训结束了,在这一次培训中我得到了很多宝贵的教学经验,受益匪浅,感受很多。 通过培训学习,使我清楚地认识到高中数学新课程内容的增减与知识的分布;怎样把握知识的深度与广度,即专家们所提醒的在对学生讲解时应该把握的尺度;新的课程标准所提出的要求。使我不仅要从思想上认识到高中数学新课程改革的重要性和必要性,而且也要从自身的知识储备上为高中数学新课程改革作好充分的准备。对于新增部分大学内容应在最短的时间里把它们拾起来,不仅要弄清,更要弄透。对于一个高中教师,要想教给学生一碗水,自己必须成为源源不断的自来水。知识的更新与深化也是为了更好地服务于社会。一成不变的教材与教法是不能适应于社会的发展与需求的。对于未曾变动的旧的知识点,考纲上有所变化的必须做到心中有数。对于不同的内容应该分别讲解到什么程度,都要做到心中有数。这样才能做到面对新教材中的新内容不急不躁、从容不迫,不至于面对新问题产生陌生感和紧张感。通过学习,使我清楚地认识到高中数学新课程的内容是由哪些模块组成的,各模块又是由哪些知识点组成的,以及各知识点之间又有怎样的联系与区别。专家们所提供的知识框图分析对我们理解教材把握教材有着非常重要而又深远的意义。对于必修课程必须讲深讲透,对于部分选学内容,应视学校和学生的具体情况而定。高中数学新课程的改革是为了更好地适应社会发展与人才需求而制定的。为了更好地适应社会发展与需求,作为教师理应先行一步,为社会的发展与变革作出自己的一份贡献。

整体把握高中数学新课程不仅可以使我们清楚地认识到高中数学的主要脉络,而且可以使我们站在更高层次上以一览众山小的姿态来面对高中数学新课程。整体把握高中数学新课程不仅可以提高教师自身的素质,也有助于培养学生的数学素养。只有让学生具备良好的数学素养才能使他们更好地适应社会的发展与进步。只有清晰地认识并把握好数学的主线,才能更好地将知识有机地联系起来。所谓的主线即贯穿于某一阶段的'某个知识点,或者是某种运算,或者是某种思想方法等等。这条主线也许只贯穿于我们的初高中阶段,也许会贯穿于我们的小学、初中、高中甚至大学阶段。因此较好的整体把握高中数学新课程、清晰地认识并把握好数学的主线,对于一个高中数学教师是非常有必要的,也是非常有意义的。将个人的智慧与集体的智慧融于一体是把握数学中的主要脉络行之有效的方法之一:不同的人对待同一个问题的看法与理解角度和理解程度是不完全相同的。不同的思维模式会产生不同的讲课方式,不同的授课方式就会收到不同的效果。好的授课方式与方法能使学生轻松乐学,如沐春风;科学的思维模式,能使学生左右逢源,事倍功半;恰当的情景导学可以激发学生自主学习的兴趣和动力。因此将个人的智慧与集体的智慧融于一体进行归纳、总结、交流能促进我们产生更多更好的授课方式、方法,产生更多更新的科学思维模式。这对于我们提高课堂教学质量具有非常现实而深远的意义。

通过网络上一些老师具体的课堂案例学习、专家的经典剖析,使我们认识到应该怎样突破教材的重点难点;怎样才能深入浅出;怎样才能顺利打通学生的思维通道、掌握一定的学习要领,形成良好的数学素养;怎样才能将一根根主线贯穿于我们的日常教学过程之中。我们已经认识到新的高考越来越倾向于“重视基础,能力立意”。 “重视基础”,意思就是从最基本的知识出发。从近几年的高考试题中不难发现,几乎所有的试题,追根求源,都能在课本中找到它的“根”;所谓“能力立意”,意思是说试题不是基础知识的简单堆砌,而是精心巧妙的组装,通过这种组装,题目就给人一种新颖、陌生感。“重视基础,能力立意”不但是高等学府选拔人才的需要,也是莘莘学子将来从事各种工作,研究和解决生活、社会问题的需要。因此,一个优秀的教师应该通过把握课堂教学来达到以下两个目标:一方面,通过我们的日常教学,能有效地帮助学生提高学习成绩,以便升入理想的大学继续深造;另一方面,从根本上提高学生的综合素质,为将来的持续发展奠定基础。新教材的安排与设计充分体现了编者的良苦用心。作为教师,应该通过自己与集体的创造,更好地为我们的学生和社会服务。

在远程培训学习中,听了好多现代教育教学理论的专家讲座,结合新课程,更新了教育教学观念。我深刻地认识到:在学习观上,要以学生为本,将学生看成是学习的主体,学生是数学学习的主人;在课程观上,教学不再只是忠实地传递和接受的过程,而是创建与开发的过程;在教学观上,教学是师生交互、积极互动、共同发展的过程,让学生主动地进行观察、实验、猜测、验证、推理与交流。新课程注重过程与方法,注重学生的感受、体验和经历。不仅教师的观念发生了变化,而且教师的角色也发生了变化,教师应是数学学习的组织者、引导者和合作者。自己也体会到,要转变观念,解放学生,让学生学会生活,引导学生追求崇高的精神境界,培养学生健全的人格并用人格力量的去引导学生,去感染学生才是我们应有的教育价值观。新时期师生关系在业务上应是双方积极性、创造性都得到充分发展的业务组合。在理论上应充分体现个性、民主和发展精神;而情感上应在个性全面交往基础上情感联系,是师生个性魅力的生动体现,是师生相互关爱的结果。同时我们应该去做一个创新型的教师,有崇高的职业理想,全新的教育观念,合理的知识结构,熟练的教学监控能力,熟练的课堂教学管理艺术。在教学评价上,应着眼于学生,注重长期的效应,注重过程的评价。评价的目的不是为了证明,而是为了发展.

通过讲解,我体会到,教学是科学,也是艺术。既然是科学,就要按规律办事,改革课堂教学,以学生为主体,提高教学的质量。同时要讲究艺术性,尽量上好每一节课。另外要加强说课和评课,提高自己的教育教学水平和能力。在这一阶段里,我努力学习,不断地充实自己,煅炼自己,对课堂教学有了很深的体会和思考。体会一:课堂教学要注重教学的有效性,有效的课堂才能保证有效的教学。体会二:要处理好两个关系,第一,教材、教师、学生之间的关系,教师是数学学习的组织者和引导者、合作者,学生是数学学习的主人,教师要创造性地使用教材;第二,课前、课内、课后的关系,课前要吃透教材和学生,课内要重示范、点评、变式的教学,课后要及时跟踪、反馈,暴露学生的错误。体会三:课堂教学中要体现如下几条原则,第一,学生是学习的主体,课堂教学中要给予学生充分的动脑、动手、动口的时间和空间,让学生去经历、去感受,建构自己的数学知识;第二,要能够创设情境,让学生在问题的情境中学习,去解决问题,提示矛盾;第三,教师要形成自己鲜明的个性化的教学风格;第四,教学中要有创新精神,要常教常新.

相关推荐

热门文档

35 3300979