首页 > 工作范文 > 总结报告 >

数据分析师的工作总结范文汇聚(通用8篇)

网友发表时间 2376305

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“数据分析师的工作总结范文汇聚(通用8篇)”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

数据分析师的工作总结【第一篇】

期末考试考的比较差,数108语105外106地83政59历65生80,我认为问题出在以下几个方面:

语文*时阅读理解没注意方法。在做阅读理解时,我不知从何处下手,找不准要点。这是一个很严重的问题。阅读理解是语文考试中比较关键的环节,也是很让人头疼的环节。语文中的很多写作方法我都很不了解,导致考到一些写作手法时只能瞎猜。我以后一定要多注意语文常识的积累。

在做数学问题时很不注意步骤。我在做题时的主要问题不是不会做,而是有时会跳步或者少写答。这个问题只要注意我相信就会很快地改掉。我在以后的做题中注意每一步的依据,在考试中细心验算,就会避免这个错误。

英语,还是在一些题上出现了马虎的现象;由于*时积累的单词和句型不够多,考试丢了不少分。

在政治和历史学科方面,由于没能正确认识这两科的重要性,*时学习态度不端正,知识上欠了很多债,以至于考出了惨不忍睹的分数。

总而言之,今后的学习计划应该和上学期时不同。因此我要改变学习方法。为了改进学习方法,我给自己订了一个学习计划:

(1)做好课前预习。也就是要挤出时间,把老师还没有讲过的内容先看一遍。尤其是语文课,要先把生字认会,把课文读熟;对课文要能分清层次,说出段意,正确理解课文内容。

(2)上课要积极发言。对于没有听懂的问题,要敢于举手提问。

(3)每天的家庭作业,做完后先让家长检查一遍,把做错了的和不会做的,让家长讲一讲,把以前做错了的题目,经常拿出来看一看,复习复习。

(4)对政治和历史两门学科的重要性要足够重视,端正学习态度,及时还清过去欠下的知识债务。

(5)要多读一些课外书。每天中午吃完饭,看半个小时课外书;每天晚上做完作业,只要有时间,再看几篇作文。

(6)课外学习不放松。能够利用星期天和节假日,到少年宫去学习作文、奥数、英语和书法,按时完成老师布置的作业,使各门功课都取得了好的成绩。

数据分析师的工作总结【第二篇】

数据分析师大多是支撑运营和决策的,但是大多都是提供数据,分析的较少。我说的分析是给出意见的分析。近期,我也在招聘数据分析师,遇到一些问题,来面试的朋友,要么就是工具的使用者,业务非常不熟悉。要么是就是链条太短,只是做网站端和销售端,对供应链、客服等非常不熟悉。

这个题目就是开放的问一个销售问题,看分析师如何给出相关的意见或者建议。当然这不是分析范畴,但是我觉得分析师既然是做运营支撑、甚至决策,那么一些基础的销售理念是应该有的。

题目:100斤苹果怎么卖,可以卖的钱又多,卖的又快?

开题:此题目意在说如何从商品的角度去考虑如何销售的问题,传统的销售方式就是经典的4p理论。渠道,商品,价格,促销。而此问题意在从商品,价格,促销的角度去问面试者问题。

题注:

1. 如果回答者答的问题说的过多,比如说渠道如何做,如果做售后,如何二次营销,范围就扩大了。

2. 如果回答者的回答过于泛,或者理论的东西比较多,或者听着非常正确而不给出解决方案,那不适合一线分析师。

上面两项是减分项。

刀刀的解答:

1、渠道是重要

用户考虑暂且放在渠道里,因为用户必须依赖渠道实现链接。但就此问题来说,有点跑题,问的是卖苹果,用户考虑一般先考虑需求和消费场景,所以不分享渠道的做法。

2、商品自己分堆

最简单,一堆贵,一堆便宜。苹果不分拣。卖个差不多再重分,46开分。

解读:利用价格做出价格歧视的感念,同时告诉消费者4的商品比较好卖,这样一个明确的指向。

3、商品拆分

按好坏分堆,好苹果贵30%。其余的分两堆,一般的常规卖,最差的贵50%,并贴上标签如涩苹果之类。

解读:劣质商品只是品质不好,不是不能卖高价,关键是你要告诉别人这是稀缺的。真实说明商品特征,不要做多,好的商品还是要高价的,稀缺商品要更贵。一般的商品就这样买。但是注意结合第四条。

4、时间因素

一般早上要比晚上贵,水果尽量当天卖完,所以在晚上8点后开始半价卖。

解读:快和多都是必须的,水果隔夜很多都会坏。晚上8点是大家出来遛弯的时候,可以做清仓了。不留呆滞库存是关键,高周转是关键。手里最好留的是钞票,而不是货物。

5、地点

这个本来不想说,还是说一下,火车站和汽车站绝对卖不出去,摊位没有。最重要的是你见过这种地方卖水果的销售有好的么?好地方在地铁口,菜市口,学校门口。

解读:人流多并不代表需求好,菜市场门口绝对比火车站好。为什么,火车站贵这是大家都知道的,再者,谁没事到火车站去买水果啊。菜市场还是做长久生意的地方,学校门口,地铁口大家多观察就知道了。

商品这个东西可以玩的很多。留几句话:

不要卖货源不稳定的某类商品。

坚决下架无法销售占位置的`商品。

主推非标准品。

流行品一定是打折卖的。

via:庖丁的刀(外贸电商分析师。关注外贸电商b2c,国内大型零售电商平台,资深数据分析师)

随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。

1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。

2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?

3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?

4、什么是:协同过滤、n-grams, map reduce、余弦距离?

6、如何设计一个解决抄袭的方案?

7、如何检验一个个人支付账户都多个人使用?

8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?

11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?

12、你最喜欢的编程语言是什么?为什么?

13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。

14、sas, r, python, perl语言的区别是?

15、什么是大数据的诅咒?

16、你参与过数据库与数据模型的设计吗?

17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?

18、你喜欢td数据库的什么特征?

22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?

23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?

26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?

27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)

28、什么是星型模型?什么是查询表?

29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?

33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?

34、你认为叶数小于50的决策树是否比大的好?为什么?

35、保险精算是否是统计学的一个分支?如果不是,为何如何?

36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。

37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?

42、你如何建议一个非参数置信区间?

44、什么是归因分析?如何识别归因与相关系数?举例。

45、如何定义与衡量一个指标的预测能力?

47、如何创建一个关键字分类?

48、什么是僵尸网络?如何进行检测?

50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?

52、什么是概念验证?

53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/it部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。

54、你熟悉软件生命周期吗?及it项目的生命周期,从收入需求到项目维护?

55、什么是cron任务?

56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?

57、是假阳性好还是假阴性好?

58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。

59、zillow’s算法是如何工作的?

60、如何检验为了不好的目的还进行的虚假评论或者虚假的fb帐户?

61、你如何创建一个新的匿名数字帐户?

62、你有没有想过自己创业?是什么样的想法?

63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?

65、哪位数据科学有你最佩服?从哪开始?

66、你是怎么开始对数据科学感兴趣的?

67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?

68、什么是推荐引擎?它是如何工作的?

69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?

70、你认为怎么才能成为一个好的数据科学家?

71、你认为数据科学家是一个艺术家还是科学家?

73、给出一些在数据科学中“最佳实践的案例”。

74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?

75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。

76、你觉得下一个20年最好的5个预测方法是?

数据分析师的工作总结【第三篇】

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

(1)facebook广告与微博、sns等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构emarketer的数据,facebook年营收额超过20亿美元,成为美国最大的在线显示广告提供商。

(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,rfm分析,客户分群,销量预测等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析师也越来越受到重视。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

为此,我对自己的规划如下:

第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数据收集和管理能力,可以更好的跟踪用户、挖掘潜在用户、挖掘潜在商品。

第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。

能力:

1、一定要懂点战略、才能结合商业;。

2、一定要漂亮的presentation、才能buying;。

3、一定要有globalview、才能打单;。

4、一定要懂业务、才能结合市场;。

5、一定要专几种工具、才能干活;。

6、一定要学好、才能有效率;。

7、一定要有强悍理论基础、才能入门;。

8、一定要努力、才能赚钱;最重要的:

文档为doc格式。

数据分析师的工作总结【第四篇】

年龄:25。

教育经历:

院校:蓝翔技校。

专业:计算机软件。

学历:专科。

主修课程:

数据库原理、软件工程。

获奖情况:

连续2年获得校三好学生、二等学习优秀奖学金。

全国大学生计算机竞赛市二等奖。

项目经验:

201x、1x-至今。

单位:翰威特咨询公司分公司。

筛选分析调研数据,使用excel处理超过2万个样本数据,具有丰富的数据处理经验;

自我评价:本人性格开朗,思想正直,诚信,稳重。工作认真踏实,责任心强,善于独立思考,分析问题,解决问题。

数据分析师的工作总结【第五篇】

1、热爱并忠诚于人民的教学事业,教学态度认真,教风扎实,严格遵守学校的规章制度。

2、认真备课。

不但备学生们而且备教材备教法,根据教材内容及学生们的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生们注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。

3、增强上课技能,提高教学质量。

使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生们的积极性,加强师生交流,充分体现学生们的主作用,让学生们学得容易,学得轻松,学得愉快。

注意精讲精练,在课堂上老师讲得尽量少,学生们动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生们学习需求和学习能力,让各个层次的学生们都得到提高。现在学生们普遍反映喜欢上课数学课。

每周坚持集体备课,保证每次都有收获,真正为提高高一级的数学成绩而努力。要求所有老师用电脑备教案,尽量并且实现资源共享共同研究、共同进步。在教学上,坚持教学研究,共同讨论,同时,多听课,学习别人的优点,克服自己的不足。

4、在课堂授课中,坚持启发式教学,坚持向45分钟要质量。

以学生们为主体,以训练为主线。教学过程重视知识与技能,学习过程和方法,情感态度与价值观,培养学生们自主学习,合作学习,探究性学习的精神。

5、真批改作业:布置作业做到精读精练。

数据分析师的工作总结【第六篇】

2、负责处理客户的现场咨询、环境分析研判指导、数据分析指导、专家会商等需求;。

3、负责区域大气污染成因分析指导及分析报告模板编制;。

4、负责协助重要项目实施的.技术指导和技术支撑工作。

1、大气科学、环境科学、大气物理或气象等相关专业博士,或硕士特别优秀者;。

2、掌握大气污染理论,对污染扩散模型、污染预警、污染溯源等技术有实践经验;。

4、要求创新能力强,善于利用新方法新工具解决新问题;。

5、具有较强的逻辑分析能力和文字表达能力,善于和人交流。

数据分析师的工作总结【第七篇】

下面,我给你介绍一名合格的数据分析师需要具备的五大基本能力和素质。

1、态度严谨负责。

严谨负责是数据分析师的必备素质之一,只有本着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结及问题。一名合格的数据分析师,应具有严谨、负责的态度,保持中立立场,客观评价企业发展过程中存在的问题,为决策层提供有效的参考依据;不应受其他因素影响而更改数据,隐瞒企业存在的问题,这样做对企业发展是非常不利的,甚至会造成严重的后果。而且,对数据分析师自身来说,也是前途尽毁,从此以后所做的数据分析结果都将受到质疑,因为你已经不再是可信赖的人,在同事、领导、客户面前已经失去了信任。所以,作为一名数据分析师就必须持有严谨负责的态度,这也是最基本的职业道德。

2、好奇心强烈。

好奇心人皆有之,但是作为数据分析师,这份好奇心就应该更强烈,要积极主动地发现和挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果不是预期的那样等等。这一系列问题都要在进行数据分析时提出来,并且通过数据分析,给自己一个满意的答案。越是优秀的数据分析师,好奇心也越不容易满足,回答了一个问题,又会抛出一个新的问题,继续研究下去。只有拥有了这样一种刨根问底的精神,才会对数据和结论保持敏感,继而顺藤摸瓜,找出数据背后的真相。

3、逻辑思维清晰。

除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。我记得有位大师说过:结构为王。何谓结构,结构就是我们常说的逻辑,不论说话还是写文章,都要有条理,有目的,不可眉毛胡子一把抓,不分主次。

通常从事数据分析时所面对的商业问题都是较为复杂的,我们要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要我们对事实有足够的了解,同时也需要我们能真正理清问题的整体以及局部的结构,在深度思考后,理清结构中相互的逻辑关系,只有这样才能真正客观地、科学地找到商业问题的答案。

4、擅长模仿。

在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速地成长,因此,模仿是快速提高学习成果的有效方法。这里说的模仿主要是参考他人优秀的分析思路和方法,而并不是说直接“照搬”。成功的模仿需要领会他人方法精髓,理解其分析原理,透过表面达到实质。万变不离其宗,要善于将这些精华转化为自己的知识,否则,只能是“一直在模仿,从未超越过”。

5、勇于创新。

通过模仿可以借鉴他人的成功经验,但模仿的时间不宜太长,并且建议每次模仿后都要进行总结,提出可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断的创新,才能提高自己的分析水平,使自己站在更高的角度来分析问题,为整个研究领域乃至社会带来更多的价值。现在的分析方法和研究课题千变万化,墨守成规是无法很好地解决所面临的新问题的。

听到这里,小白就掰着手指头算自己符合几条优秀数据分析师的素质和能力。

mr.林继续说道:这些素质能力不是说有就有的,需要慢慢培养形成,不能一蹴而就。

数据分析师的工作总结【第八篇】

1、要认真研究课程标准。

在课程改革中,教师是关键,教师对新课程的理解与参与是推进课程改革的前提。认真学习数学课程标准,对课改有所了解。课程标准明确规定了教学的目的、教学目标、教学的指导思想以及教学内容的确定和安排。继承传统,更新教学观念。

高中数学新课标指出:“丰富学生们的学习方式,改进学生们的学习方法是高中数学课程追求的基本理念。学生们的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。在高中数学教导中,教师的讲授仍然是重要的教学方式之一,但要注意的是必须关注学生们的主体参与,师生互动”。

2、合理使用教科书,提高课堂效益。

对教材内容,教学时需要作适当处理,适当补充或降低难度是备课必须处理的。灵活使用教材,才能在教学中少走弯路,提高教学质量。对教材中存在的一些问题,教师应认真理解课标,对课标要求的重点内容要作适量的补充;对教材中不符合学生们实际的题目要作适当的调整。此外,还应把握教材的“度”,不要想一步到位,如函数性质的教学,要多次螺旋上升,逐步加深。

3、改进学生们的学习方式,注意问题的提出、探究和解决。

教会学生们发现问题和提出问题的方法。以问题引导学生们去发现、探究、归纳、总结。引导他们更加主动、有兴趣的学,培养问题意识。

4、在课后作业,反馈练习中培养学生们自学能力。

课后作业和反馈练习、测试是检查学生们学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生们的自学能力。在学完一课、一单元后,让学生们主动归纳总结,要求学生们尽量自己独立完成,以便正确反馈教学效果。

5、分层次教学。

我所教的两个班,层次差别大,1班主要是落后面的学生们,初中的基础差,高中的知识对他们来说就更增加了难度,而2班也是两极分化严重,前面16个学生们的基础扎实,成绩在中等以上,而后面的30个学生们的成绩却处于中下以下的水*,因此,不管是备课还是备练习,我都注重分层次教学,注意引导他们从基础做起,同时又不乏让他们可以开拓思维,积极动脑的提高性知识,让人人有的学,让人人学有获。

1、书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生们的学习负担,而且学生们完成情况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。

2、在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生们听得似懂非懂,造成差生越来越多。而且知识内容需要补充的内容有:乘法公式;因式分解的十字相乘法;一元二次方程及根与系数的关系;根式的运算;解不等式等知识。

3、虽然经常要求学生们课后要去完成教辅上的精编的题目,但是,相当部分的同学还是没办法完成。学生们的课业负担太重,有的学生们则是学习意识淡薄。

1、要处理好课时紧张与教学内容多的矛盾,加强对教材的研究;

2、注意对教辅材料题目的精编;

3、要加强对数学后进生的思想教育。

总之,作为一名刚教高中的新教师,对教材的不熟悉,对重难点的突破,对考点的把握,对学生们的方法指导,对高中教学的经验都是一个很大漏洞,我将把握好每一天,继续努力,争取更好的成绩。

相关推荐

热门文档

35 2376305