七年级下册数学 七年级数学下册知识点总结通用4篇
【导言】此例“七年级下册数学 七年级数学下册知识点总结通用4篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
初一下册数学知识点汇总【第一篇】
平行线具有性质:
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的。语句叫做命题。
初一下册数学知识点总结【第二篇】
相交线与平行线
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
七年级数学下册知识点总结5
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。
两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。
判定两条直线平行的方法:
方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
平行线的性质
平行线具有性质:
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各
组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。
第六章《平面直角坐标系》
平面直角坐标系
有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
坐标方法的简单应用
用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
第七章《三角形》
与三角形有关的线段三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。
三角形的高、中线和角平分线
三角形的稳定性
三角形具有稳定性。
与三角形有关的角
三角形的内角
三角形的内角和等于180。
三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。
多边形及其内角和
多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形。
多边形的内角和n边形的内角和公式:180(n-2)
多边形的外角和等于360。
1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
☆2判断三条线段能否组成三角形。
①a+b>c(a b为最短的两条线段)②a-b
☆3第三边取值范围:a-b < c若两边分别为a,b则周长的取值范围是2a
如两边分别为5和7则周长的取值范围是14
☆5三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。
6“三线”特征:
☆三角形的中线
①平分底边。
②分得两三角形面积相等并等于原三角形面积的一半。
③分得两三角形的周长差等于邻边差。
☆7直角三角形:
①两锐角互余。
② 30度所对的直角边是斜边的一半。
③三条高交于三角形的一个顶点。
④ ∠A=1/2∠B=1/3∠C
⑤ ∠A: ∠B: ∠C=1:2:3
⑥ ∠A=∠B+∠C ⑦ ∠A: ∠B: ∠C=1:1:2 ⑧ ∠A=90-∠B
☆8相关命题:
→1三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
→2锐角三角形中的锐角的取值范围是60≤X<90 。锐角不小于60度。
→3任意一个三角形两角平分线的夹角=90+第三角的一半。
→4钝角三角形有两条高在外部。
→5全等图形的大小(面积、周长)、形状都相同。
→6面积相等的两个三角形不一定是全等图形。
→7能够完全重合的两个图形是全等图形。
→8三角形具有稳定性。
9三条边分别对应相等的两个三角形全等。
10三个角对应相等的两个三角形不一定全等。
11两个等边三角形不一定全等。
12两角及一边对应相等的两个三角形全等。
13两边及一角对应相等的两个三角形不一定全等。 14两边及它们的夹角对应相等的两个三角形全等。 15两条直角边对应相等的两个直角三角形全等。
16一条斜边和一直角边对应相等的两个三角形全等。
17一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
18一角和一边对应相等的两个直角三角形不一定全等。
19有一个角是60的等腰三角形是等边三角形。
七年级下数学知识点总结【第三篇】
抛物线的性质:
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
焦半径:
焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fè÷
p2,0的距离|PF|=x0+p2.
求抛物线方程的方法:
(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程。
(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式。从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).
初一下册数学知识点总结【第四篇】
多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。