首页 > 工作范文 > 总结报告 >

学校管理的数据分析师工作总结范文(最新8篇)

网友发表时间 2650647

学校管理的数据分析师工作总结【第一篇】

按以下流程来写:

1、清楚业务目标。

2、查看数据报表表现。

3、发现问题。

4、分析原因。

5、提出建议。

6、测试/实验。

7、实施。

首先要明白没有目标也就无所谓分析,其次分析的时候要注重关联,细分,以及数据的背景信息,同时可采用鱼骨分析法分析原因类型,注意的是问题的80%可能只是20%的原因造成,找出主要问题,提出建议,不要忘了做测试,有时候原因可能不是想象中的,所以需要通过测试来验证你的假设,最后如果实验结果满意就进一步具体实施,不满意再来一边。

千万不要闷头自己想,一定要测试。

学校管理的数据分析师工作总结【第二篇】

在数据分析岗位工作三个月以来,在公司领导的正确领导下,深入学习关于淘宝网店的相关知识,我已经从一个网店的门外汉成长为对网店有一定了解和认知的人。现向公司领导简单汇报一下我三个月以来的工作情况。

一、虚心学习,努力提高网店数据分析方面的专业知识。

作为一个食品专业出身的人,刚进公司时,对网店方面的专业知识及网店运营几乎一无所知,曾经努力学习掌握的数据分析技能在这里根本就用不到,我也曾怀疑过自己的选择,怀疑自己对踏出校门的第一份工作的选择是不是冲动的。但是,公司为我提供了宽松的学习环境和专业的指导,在不断的学习过程中,我慢慢喜欢上自己所选择的行业和工作。一方面,虚心学习每一个与网店相关的数据名词,提高自己在数据分析和处理方面的能力,坚定做好本职工作的信心和决心。另一方面,向周围的同同事学习业务知识和工作方法,取人之长,补己之短,加深了与同事之间的感情。

二、踏实工作,努力完成领导交办的各项工作任务。

三个月来,在领导和同事们的支持和配合下,自己主要做了一下几方面的工作:

1、汇总公司的产品信息日报表,并完成信息日报表的每日更新,为产品追单提供可靠依据。

2、协同仓库工作人员盘点库存,汇总库存报表,每天不定时清查入库货品,为各部门的同事提供最可靠的库存数据。

3、完成店铺经营月报表、店铺经营日报表。

4、完成每日客服接待顾客量的统计、客服工作效果及工作转化率的查询。

5、每日两次对店铺里出售的宝贝进行逐个排查,保证每款宝贝的架上数的及时更新,防止出售中的宝贝无故下架。

6、配合领导和其他岗位的同事做好各种数据的查询、统计、分析、汇总等工作。做好数据的核实和上报工作,并确保数据的准确性和及时性。

7、完成领导交代的其它各项工作,认真对待、及时办理、不拖延、不误事、不敷衍,尽量做到让领导放心和满意。

三、存在的不足及今后努力的方向。

三个月来,在公司领导和同事们的指导和配合下,自己虽然做了一些力所能。

及的工作,但还存在很多的不足,主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。另外,由于语言不通的问题,在与周围的同事沟通时,存在一定的障碍。

针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同事,把网店的数据分析工作做细做好。

四、对公司人员状况及员工工作状态的分析。

1、对公司人员状况的分析。

要想管好一个企业,首先要管好这个企业的人,要想管好一个企业的人,首先要对这个企业人员的基本情况有个比较全面的、细致的、科学的正确的了解。

目前公司成员大部分为90后,是一个年轻化的团队。他们大部分在长辈们的宠爱中长大,心理素质不怎么成熟,没有自信心,没有目标,责任心不强,不怎么能吃苦,心理承受能力较弱,不爱学习,不明白工作的真正意义。不过也有一部分比较懂事,做事比较踏实、勤奋、性格也比较好。

因此,我们在招聘的时候,要招那些肯学习、善于学习、领悟力学习力强的人。不过,这部分人一般都比较现实,对待遇、公正公平、发展空间比较看重。

其实,我们要想打造一流的企业,培养一流的员工,一流的管理人员并不是难事。最重要的是要有一颗真正的,持之以恒的做事业的心。

2、对员工工作状态的分析。

目前,部分岗位存在分工不明确的现象,出现问题时,同事之前相互推诿,不愿意承担责任,这也是部分员工责任心不强的最直接反映。部分员工没有团队合作意识,这就可能导致工作在某个环节衔接不上,进而有可能出现重大问题。

因此,明确分工和加强员工的团队合作意识也是公司目前需要解决的问题。

五、对公司企业文化的分析。

企业文化,对我本人来讲,是一个管理学里面比较专业的词,我怕自己讲不好它。但我却可以深刻的体会到,这个无形的东西就在我的周围,在我们的骨髓里。因为我觉得它重要,所以,还是想讲它,而且觉得非讲不可。

在我所走到的企业里,旺旺集团的企业文化给我留下的印象最深。他们有自己明确的经营理念、经营目标、公司训、公司口号、企业标识、公司社歌和独立的传媒机构。他们的企业文化具有很强的感染力和凝聚力。

但是,很长一段时间以来,我们的公司一直处在“黎明前的黑暗”之中,为什么公司领导的那种不到山顶不罢休的气势、决心和信心,并没有感染所有的员工,那种不到山顶不罢休的气势、决心和信心并没有很好的变成我们的企业文化。没有被突出出来,没有在公司发展的日日夜夜中,张扬的体现给我们企业所有的员工们看。甚至是没有被人感觉到。

所以,加强健康向上的企业文化的建设工作,也就成为一种必要。十分的必要。也该引起足够的重视。把目前创业阶段的决心和信心力量、企业和员工相互之间的理解、信任、支持和默契融入到我们的企业文化中去。从而感染和吸引更多的优秀人才到我们中来,共同开创我们企业的未来。

述职人:

20__年__月__日。

学校管理的数据分析师工作总结【第三篇】

数据分析师,简单切词为“数据”,“分析”,“师”。因此,获取必要的数据,分析这些数据,然后从数据中发现一些问题提出自己的想法,这就是一个数据分析师的基本工作内容。

自己做了两年数据分析师,真的觉得古语说的对,“功夫在诗外”。一名好的数据分析师,接到一个需求时,会更多考虑这个需求本身,包括要做的东西是什么,为什么这么做,还可以怎么做,怎么去做,关键点是什么。都想清楚了,才去动手做。建议任何一名数据分析人员,都能在做以前把问题想清楚,确认清楚,不要等到做完才发现自己做错了,那样会很浪费时间。自己这方面曾犯过n多错误。

下面简单谈下做一名数据分析师要经历的几个步骤:

(1)获取数据。

获取相关的数据,是数据分析的前提。每个企业,都有自己的一套存储机制。比如淘宝,所有的数据都在hadoop上,很多数据都要经过hadoop,hive来获取。因此,基础的sql语言是必须的。具备基本sql基础,再学习下hive的细节的语法,基本就可以通过hive拿到很多数据了。每个需求明确以后,都要根据需要,把相关的数据获取到,做基础数据。

(2)数据处理。

对于数据的处理,有两种形式:

a如果初步提取的数据是在linux上,建议学一门脚本语言,比如awk,或者python。如果掌握一门脚本语言,不仅可以在linux系统上写很多自动脚本来运行,会大大节省自己的时间,而且可以通过脚本语言把基础数据处理成自己想要的任何形式,直接可以使用。

b如果数据没有在linux上,那可以download,然后通过其他统计软件来处理。个人推荐sas或者r语言。sas的强大,不必多说。没有sas解决不了的问题,而且sas也有sql,处理起来也方便。r语言最近也很火,而且免费,packages越来越多,画图也简单,类似matlab。如果前期数据处理的好,后续只需要通过r或者sas画一些图就可以了。在数据分析师的世界,按照价值排序,图表文字。

(3)分析数据。

这里的数据,包括图,表,数字几种。分析数据是整个分析的关键,也考验分析师的水平。好的分析师,可以根据趋势图,对比数据,敏锐的观察到很多问题。可是这需要对业务,对数据有很深的了解,才会把数据和业务结合起来,发挥两者的价值,完成需求。所以,一名数据分析师,要把更多的时间放在了解业务上。只有业务了解,细节清楚,才会明白业务变动可能引起的数据指标的变动,也会在后续的需求分析中,更快更全面的解决其他人提出的问题。可能很多人都很困惑,怎么才能“敏锐”的观察到数据的变动呢,我为什么怎么也发现不了问题呢?个人感觉可以通过以下方法,来慢慢锻炼:

a多问几个为什么。比如,看到一些指标,就想想这些指标代表什么,用自己的话可以怎么理解;看到一条趋势线有波动,就想想为啥子某个点异常波动呢?多问问问题,自己就会加深对业务和指标关联的敏感性。

b借鉴统计方法。统计学中,都会有一些横纵对比,趋势分析等等。对比,在分析师数据时候,是一个很重要的东西。任何东西,也因为了对比,才会有高有低,有长有短。另外,分布,也是一个很好的东西。分布的变化,就意味着变动,变动的发展结果,就能知道业务发展的好坏。再次,占比啊等等,都是很简单但是实用的方法。

c向师兄请教。有的时候,一个问题,自己沉迷其中不能自拔,旁观者一句话,就能点清自己的思路。当自己分析数据不得要领的时候,就多请教师兄。

(4)展示成果。

分析数据以后,解决需求的问题,就需要汇总分析的成果,给到其他人。可能分析的过程,拿到的数据有很多,需要全部给其他人么?怎么去罗列这些数据呢?可能很多人都犯难。有一次,一个同学来问我,她有很多数据,但是就是不知道该怎么组织,才能证明自己的结论是对的。其实,作为一名数据分析师,就是根据数据,把问题解决,提出一两条参考建议给到需求方就ok了。因此,回复的结果简单明了就好。如果是回复一封邮件,可以这样来做:

b如果觉得有必要,就在下面再把分析过程写进去;。

c如果图和图表不多,可以添加到邮件第三部分。毕竟放上数据,任何同学有疑问,可以随时去看数据。如果图和图表实在太多,就放到附件!

其实,做一名数据分析师,真的不容易,不仅要懂业务,还要会技术,更要敏锐发现问题,总结,还要提出建议。自己干了n多工作,最后还不一定能得到一个好的结果。做了两年数据分析师,自己的重心也在慢慢的转移。从刚开始技术学习,到后面技术+业务的结合,到现在自己又钻到业务,研究业务,慢慢发现:一名好的数据分析师,是一个好的产品的规划者和行业的领跑者。

学校管理的数据分析师工作总结【第四篇】

一是认真做好各项报表的定期制作和查询,无论是本部门需要的报表还是为其他部门提供的报表。保证报表的准确性和及时性,并与报表使用人做好良好的沟通工作。并完成各类报表的分类、整理、归档工作。

二是协助主管做好现有系统的维护和后续开发工作。包括topv系统和多元化系统中的修改和程序开发。主要完成了海关进出口查验箱报表、出口当班查验箱清(“两学一做”学习活动总结)单、驳箱情况等报表导出功能以及龙门吊班其他箱量输入界面、其他岗位薪酬录入界面的开发,并完成了原有系统中交接班报表导出等功能的修改。同时,完成了系统在相关岗位的安装和维护工作,保证其正常运行。

三是配合领导和其他岗位做好各种数据的查询、统计、分析、汇总工作。做好相关数据的核实和上报工作,并确保数据的准确性和及时性。

四是完成领导交办的其他工作,认真对待,及时办理,不拖延、不误事、不敷衍,尽力做到让领导放心和满意。

三、存在的不足和今后的努力方向。

半年来,在办公室领导和同事们的指导帮助下,自己虽然做了一些力所能及的工作,但还存在很多的不足:主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。

针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同志,共同把办公室的工作做细做好。

学校管理的数据分析师工作总结【第五篇】

本人于201*年1月起开始担任镇党委委员武装部部长。几年来,在镇党委、政府的正确领导下,在市武装部的具体指导下,在各个职能部门和机关同志的关心、支持、帮助下,我始终坚持按照“三个代表”的重要思想要求自己,努力学习,认真履行职能。现将201*年一年的工作报告如下:

一、主要工作情况。

1、抓好组织调整与落实。

年初,按照市武装部201*年民兵、预备役部队组织整顿工作的总体部署和要求,结合我镇民兵、预备役工作的实际情况,对基层民兵连队的组织进行了重新调整。把一批文化素质高、年龄较轻、身体素质好的适龄青年编入了民兵部队当中。通过抓组织调整,实现我真民兵“编组合理、组织健全、干部齐备、民兵充足、官兵相识”的好局面,调整后,我真民兵总数为4200名,普通民兵3700人,基干民兵480人,编制在20个民兵连中,其中编入市武装部及步兵分队2个连,311人;侦察连1个,95人;防化连1个,74人。

2、抓好基层连队正规化建设,搞好退伍军人与地方专业对口、半对口技术人员服预备役登记、统计工作。

为了加强基层连队正规化建设,按照年初制定的计划目标,以“典型”促进全面发展为目的,开展争创“先进连队”活动。我们重点对合并后的村按照连队建设标准进行了重点监督检查,健全了各项规章制度,宣传图板齐全,各种资料立卷归档、统一放入文件柜内保管,软件实施落实到位,硬件设施达到了“五有”的标准,即:有门牌、有办公室、有库房、有资料库、有活动场所。我们以交界台村、前柳河村民兵连正规化建设为典型,通过试点作用取得了很大成效,现已达到“红旗连5个,先进连队5个,达标连队10个”。使之全面达到了连队建设标准要求。前柳村民兵连被海城人武部评为基层标杆民兵连。通过对退伍军人和地方专业对口、半对口技术人员的等级统计,把身体素质好、年轻、有专业的技术人员及时补充编入“二营有线连”,成为预备役战士,提高连队的战斗力。

3、抓好民兵应急分队建设,圆满完成上级交给的各项急难险重任务。今年11月份,我们面对我省突如其来的禽流感疫情紧急启动了应急预案为了提高适应新情况能力,我们重新调整了应急分队人员,调整后,我们现有应急分队500人,每村25人。这些同志们分别配合镇、村两级领导在各自的村进行了设卡堵卡,他们不畏严寒,不怕艰苦,在保护国家人民群众生命财产的关键时刻不计个人得失,为党和政府交上一份满意的答卷。

4、抓好新兵选送,做好征兵工作。

201*年,海城市人民政府、市武装部向我镇下达了征集男性新兵32名的任务。为了圆满地完成今年的征兵任务,向部队输送优质兵员,我们早作准备开始宣传,并且在报名初检、上站体检、政治审查、文化检查、病史调查、协商兵员等多个步骤层层把关,使我镇兵员在海城体检时合格率达到70%,名列前茅。受到了市委武装部的大力赞赏,也得到了接兵部队的好评,我镇被鞍山市人武部和海城市人武部均授予了“征兵工作先进单位”的光荣称号。

二、不断加强学习,提高自身素质。

为了适应新时期的民兵预备役工作,自己深深感到理论的功底还比较浅。只有不断的学习,提高自身素质,才能迎接各个方面的挑战。因此,我除了参加真理定期的集中整治学习外,还利用一切机会挤出时间自学相关知识。

1、结合本职工作努力学习新时期党的路线、方针、政策。从今年一月开始,我镇开展了保持^v^员先进行教育学习活动。在学习过程中,我始终把“三个代表”的重要思想和十六届五中全会精神作为全年的学习重点,认真完成先进性教育学习各个阶段具体要求,写了一万字以上的学习笔记和两篇体会文章。以此来充实提高政治思想觉悟和理论水平,丰富政治理论功底,始终保持清醒的头脑。

2、扎进时间学习业务知识。为了能把本职工作做得更出色,我利用业余时间自学了《兵役法》、《辽宁省兵役工作管理条例》等相关法规书籍,关心新形势下国家队预备役要的新特点,力求把工作做到最好。

三、从严要求自己,锤炼自我品格。

作为镇党委班子的一员,自身的形象直接影响到镇党委的整体形象。因此,我在工作和生活中始终注重严格要求自己,努力锤炼过硬的思想品质,保持^v^员的本色。

1、筑牢思想防线。作为一名党员干部,必须时刻把维护党的利益,国家的利益和人民的利益作为实现人生价值的最高追求,牢固树立正确的.人生观、价值观、世界观。在工作中,始终坚持艰苦奋斗的光荣传统和作风,自觉地实践“三个代表”的重要思想,全心全意为人民服务。

2、注重行为规范。时刻按照党员干部标准来严格要求自己,时刻保持自重、自警、自醒、自励。严格执行党风廉政建设的各项规定,从小事做起,防微杜渐。堂堂正正做人,清清白白为官,对违背人民群众意愿的事,坚决不做。

3、塑造良好的品德。我始终恪守“为人以真,待人以诚,处事以公”的原则,不断强化自身修养,培养自己的良好品德,对待同志坚持以诚相待。

四、存在的不足。

当然,在取得一些成绩的同时,我还存在着一定的不足。主要体现在理论学习抓的深度还不够,在学习中只满足教育的需要,缺乏系统的学习精神,多是零散学习,接下来还应往着方面努力。

学校管理的数据分析师工作总结【第六篇】

1、酒店财务部提供数据(单位:人民币万元):

2、分析原因(要求:由酒店总办牵头销售部、营业部门作出分析,要求简单、清晰,每个分析不能超过三个小点,特殊的可以另行报告)。

a、完成指标——采取哪些有效措施:

b、未完成指标——具体原因分析:

c、与去年同期相比(含同期月份及截止同期月份的累计)——上升及下降原因分析:

d、未完成指标——下一步准备采取哪些措施(以下措施下个月要分析成果):

e、尚需要酒店管理公司及集团其他部门配合的工作:

1、酒店财务部提供数据(单位:百分比):

项目7月份本月指标本月完成本年指标本年累计完成去年同期差异。

毛利率。

2、分析(要求:由酒店总办牵头营业部门作出分析,要求简单、清晰,每个分析不能超过三个小点,特殊的可以另行报告)。

a、完成指标——采取哪些有效措施:

b、未完成指标——具体原因分析:

c、与去年同期相比(含同期月份及截止同期月份的累计)——上升及下降原因分析:

d、未完成指标的——下一步准备采取哪些措施(以下措施下个月要分析成果):

e、尚需要酒店管理公司及集团其他部门配合的工作:

税款。

1、酒店财务部提供数据(单位:人民币万元):

2、分析(要求:由财务部进行分析)。

a、已完成指标采取过哪些有效措施:

b、未完成指标原因分析:

c、与去年同期相比(含同期及年累计)上升及下降原因分析:

d、在未完成指标的情况下,下一步准备采取哪些措施(以下将作为下个月分析重点):

e、尚需要酒店管理公司及集团其他部门配合的工作:

能源额。

1、酒店财务部提供数据(单位:人民币万元,百份比):

2、经营分析(要求:由酒店总办牵头各能源责任部门作出分析,要求简单、清晰,每个分析不能超过三个小点,特殊的可以另行报告)。

a、节能降耗采取哪些措施:

b、能耗超标原因分析:

c、与去年同期相比(含同期及年累计)上升及下降原因分析:

d、下一步节能降耗采取哪些措施(以下将作为下个月分析重点):

e、尚需要酒店管理公司及集团其他部门配合的工作:

学校管理的数据分析师工作总结【第七篇】

根据市局要求,现我村已对本村16户mmps调查登记户20xx年上半年及20xx年上半年的数据进行汇总分析,经仔细分析后结合我村情况,现就有关部分收支差距明显的项目作出如下报告:

1、代码(403)渔业经营收入方面比去年同期增加56000元,原因是去年同期受持续降雨影响,大部分养殖户(养殖南美白对虾)v有不同程度的损失,而今年年初越冬棚虾却有大幅的价格上升,所以今年上半年渔业收入方面有少许增加,但从本村总体情况来看,因四、五、六月开始南美白对虾价格持续下滑,故从总体来看,本村渔业经营收入方面与去年同期相比差距不是很大。

2、代码(412)渔业生产费用支出方面,比去年同期有所增加,原因是受到鱼塘租金上升及渔业生产资料(虾料)价格上升所影响。

3、代码(317)财产性现金收入比去年同期增加22970元,主要受代码(405)村集体分红影响,本村集体分红主要来自两方面:一是年终分配款,二是口粮款;这两方面的收入又受到本村集体鱼塘租金及花地租金的.多少而决定,随着现在每年鱼塘租金的上升,故村民集体分红也跟着增加,这是今年上半年财产性现金收入增加的原因。

4、代码(320)期内非收入所得现金增加57500元,主要受代码(323)取回存款所影响,与去年同期相比,取回存款增加57500元。

5、代码(315)工业和建筑业经营收入与代码(333)工业建筑业生产费用支出,此两项与去年同期相比减少近11万多元,原因在两方面:一是去年登记数据时是按不扣除成本即总收入来登记,而今年上半年开始,登记时是按扣除成本的净利润来登记,故是造成差距极大的原因;二是本村“吴开荣”一户是经营毛织厂的',去年均是全年经营,而今年开始此毛织厂每月才开工两、三天,故经营收入或支山均有较明显的减少。

6、代码(340)居住现金支出:比去年同期增加6万多元,此项受代码(415)新建(购)房支出影响,原因是有一户有新建房屋支出。

7、代码(342)医疗保健支出:比去年同期有所增加,原因是有一户有一个新出生婴儿,所以在保健方面费用有所增加。

8、代码(343)交通通迅支出:此项比去年同期有所减少,原因是外出(远行)减少,所以交通费用相应减少。

9、代码(418)教育费用支出:比去年同期有所减少,原因是去年有部份读高中或中专的学生去年7月已毕业,今年上半年在读的学生绝大部分是初中生或小学生,学费相对较少,甚至有一户有一学生已没有上学(个人原因辍学),所以教育费用相应减少。另外代码(419)旅游费用支出方面,今年上半年16户之中均没有外出旅游,故此项没有支出。

10、代码(339)衣着消费支出和代码(353)存入银行信用社款的减少,这些项目主要是受农户“主观性”原因所影响,不用深究!

另外,今年上半年经过再开会培训,已将以前部份项目代码概念搞混乱的地方重新更正过,致使这些代码数据与去年同期相比会出现或多或少的情况。我村已将16户调查户的家庭人口情况按照年龄、职业、收入全部制成表格分析填报,每月跟踪访问,力求做到数据真实可靠、不错漏。

学校管理的数据分析师工作总结【第八篇】

近期主要完成了某产品用户画像分析,从9月底拿到数据,到上周输出第三稿,中间历时一个半月,如果从收到需求,到三稿输出,那就超过两个月,在这次整个分析过程中,遇到了不少问题,尝试了使用不同方法,现在是时候做一个复盘、总结、反思。

在开始阶段,遇到的主要问题是客户的要求是分析产品用户画像报告,因为没有直接跟客户沟通,而需求只有简单的一句话,我只能根据经验列出要分析的要点,确定需要的数据维度。在我确定分析框架后,我发现如果按照我方的想法最后输出的结果却不是客户想到的,那就白做了,所以确定分析框架后还需要客户确认,思路是否可行,分析方向有无异议。这个问题还算比较好解决,客户同意了分析思路即可。

经过与客户沟通后,到了第二阶段,发起提数需求。这个过程总体算比较顺利,客户方数据库工程师首先反馈了一份样本数据,让我方确认数据是否正确,如正确,则提供全量样本。数据验证的过程,主要是由我来完成,对样本数据,我提出了一些疑问,对方也一一解答。当然还有个别字段逻辑问题,我没有发现,对后续的分析带来了一些影响,造成最后能使用的维度减少,是一个遗憾。

拿到全量数据后,对数据进行清洗。在这个过程中发现数据质量非常不理想,很多字段的缺失值占比很大,个别字段也有异常值,总体样本中能使用的记录锐减。一开始我的处理方法比较简单,对缺失值占比达的字段直接不使用,带来的后果就是输出的第一版分析报告过于简单。

重新回到数据,再次对数据进行摸底,而且也调整分析方法,尝试使用聚类分析方法,按用户活跃渠道,对用进行分群,分群后,再结合其他维度,对用户进行描述。这一次输出的报告还是存在一些问题,最大问题就是用户群之间区别不明显,只能继续修改。中间因为要做另一个分析,用户画像分析就暂时先放一边。

完成另一个分析后,继续回到产品用户画像分析,这次同事提出了一些建议,在没有更好的思路前,我按照同事的建议第三次修改分析报告。当然还是要先处理数据,这次我对异常值、缺失值就行了处理,异常值使用的是盖帽法,对缺失值,在一些字段中用0填补,这样增加了可使用的维度。数据清洗完后,对连续变量进行分箱处理,这一次还是先使用聚类分析,对几个字段进行聚类,这样增加了两个大的维度,接着基于两个大的维度,使用对应分析方法,结合其他维度观察变量间的关系,最后的结果显示有部分变量之间是存在明显的关系,有些几乎没有区别。数据处理完后,再次输出分析报告。

完成第三次分析后,我回过头来看看分析中存在的问题,尤其是使用对应分析,查阅了一些资料,发现在对应分析中,应该先进行预分析。聚类分析,两次我都是使用k—means聚类,其实还可以使用二阶聚类,二阶聚类适用于分类变量,这是快速聚类不适用的,我尝试在清洗后的数据中使用二阶聚类,效果尚可。

出处

最近恰好又在看丁亚军老师的讲课视频,讲到聚类分析,再结合我在工作中的应用,对聚类分析方法有了新的认识。聚类方法在刚兴起的时候,是不被传统的统计学家们接受,因为这个方法太简单,没有使用到过多的统计学知识。在实际的工作中,聚类使用的频率还是很高的,尤其是在用户分群方面,用户特征的描述。对应分析是第一次用到,为什么会想到使用对应分析,主要是根据变量类型,几个分类型变量,探究变量间的关系,除了相关分析外,对应分析也使用,而且它的结果更直观。

最后能完成第三稿也要感谢同事的建议,一个人的力量是有限的,群策群力、集思广益才能做得更好。

相关推荐

热门文档

35 2650647