首页 > 工作范文 > 总结报告 >

六年级数学知识点总结【优质8篇】

网友发表时间 2473566

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“六年级数学知识点总结【优质8篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

六年级数学知识点总结【第一篇】

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:

1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)。

针对练习:

一、我国国土总面积是960万平方千米。下面是我国地形分布情况统计图,请根据统计图回答问题。

1、我国山地面积占总面积的百分之几?

2、各类地形中,什么地形面积?什么最小?

3、你还能得到哪些信息?

4、请算出各类地形的实际面积,填入下表。

地形种类山地丘陵高原盆地平原。

面积(万平方千米)。

二、小军家20xx年11月支出情况统计如下图。聪聪家20xx年11月的总支出是3600元。请你回答问题。

1、这个月哪项出最多?支出了多少元?

2、文化教育支出了多少元?购买衣物支出了多少元?

3、购买衣物的支出比文化教育支出少百分之几?

4、你还能提出什么问题?并解决你所提出的问题?

六年级数学知识点总结【第二篇】

1、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归

5、倒数:乘积是1的两个数叫做互为倒数。

6、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

8、小数的倒数:

普通算法:找一个小数的倒数,例如,把化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1。

9、用1计算法:也可以用1去除以这个数,例如,1/等于4,所以的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10、分数除法:分数除法是分数乘法的逆运算。

11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。

15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

六年级数学知识点总结【第三篇】

1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=:。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

六年级数学知识点总结【第四篇】

1、0既不是正数,也不是负数,它是正数和负数的分界。

0大于负数,小于正数。负数比较大小时,不考虑负号,数字大的数反而小。

2、“+”可以省略不写,“-”不能省略。

3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。

数轴上0左边的数都是负数,0右边的数都是正数。

从左到右逐渐变大最大负整数-1最小正整数1。

六年级数学知识点总结【第五篇】

1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。

2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。

3.乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。

5.乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。

6.减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。

(三)运算法则。

1.整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

2.整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3.整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4.整数除法计算法则:

先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

5.小数乘法法则:

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6.除数是整数的小数除法计算法则:

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

7.除数是小数的除法计算法则:

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

8.同分母分数加减法计算方法:。

同分母分数相加减,只把分子相加减,分母不变。

9.异分母分数加减法计算方法:。

先通分,然后按照同分母分数加减法的的法则进行计算。

10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。

六年级数学知识点总结【第六篇】

1、用圆规画圆,圆规两脚的距离就是所画圆额(__)。

a、圆心b、半径c、直径。

2、圆中两端都在圆上的线段(__)。

a、一定是圆的半径b、一定是圆的直径c、无法确定。

3、在日常生活中,我们所见的下水井盖一般都制成(__)。

a、正方形b、长方形c、圆形。

4、在同一个圆中最长的一条线段是(__)。

a、半径b、直径c、直线。

5、画一个直径为5厘米的圆,圆规两脚之间的距离是(__)。

a、5厘米b、10厘米c、厘米。

1、所有的半径都相等,所有的直径都相等。(__)。

2、圆的半径越长,这个圆就越大。(__)。

3、画图时,圆规两脚尖之间的距离就是圆的半径。(__)。

4、圆沿一条直线滚动时,圆心在一条直线上运动。(__)。

5、两个圆的大小一样,它们的半径一定相等。(__)。

6、一条直径可以分成两条半径,两条半径也就是一条直径。(__)。

7、平行四边形、长方形、正方形、圆形都是平面图形中的直线图形。(__)。

8、经过一点可以画无数个圆。(__)。

9、经过圆心的线段一定是直径。(__)。

10、圆心相同的圆,大小也相等。(__)。

1、画一个半径为1厘米的圆。

2、以点o为圆心,分别画两个大小不同的圆。

3、用你喜欢的方法画一个半圆,并标出它的圆心,半径和直径。

4、在下面长方形和正方形中各画一个的圆。r=(__)d=(__)。

1、图中已学过的图形有(__)、(__)、(__)、(__)。

2、正方形的周长是(__),小圆的直径是(__),半径是(__)。

3、直角梯形的高与上底都是(__),下底是(__),面积是(__)。

4、大三角形的底边长是(__),高是(__),面积是(__)。

1、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?

六年级数学知识点总结【第七篇】

1.最小的一位数是1,最小的自然数是0。

2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

4.小数的分类:小数、有限小数、无限循环小数、无限小数、无限不循环小数、

5.整数和小数都是按照十进制计数法写出的数。

6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

六年级数学知识点总结【第八篇】

一次不定方程:

常规方法:

观察法、试验法、枚举法;。

多元不定方程:

含有三个未知数的方程叫三元一次方程,它的解也不。

多元不定方程解法:

列方程、数的整除、大小比较。

解不定方程的步骤:

1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案。

技巧总结:

b、消元技巧:消掉范围大的未知数。

什么是百分数?

表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。

比例。

(1)什么是比例?

表示两个比相等的式子叫比例。

(2)什么是比例的项?

组成比例的四个数叫比例的项。

(3)什么是比例外项?

两端的两项叫比例外项。

(4)什么是比例内项?

中间的两项叫比例内项。

(5)什么是比例的基本性质?

在比例中两个外项的积等于两个内项的积。

(6)什么是解比例?

求比例中的未知项叫解比例。

(7)什么是正比例关系?

两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。

(8)什么是反比例关系?

两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。

圆柱。

(1)什么是圆柱底面?

圆柱的上下两个面叫圆柱的底面。

(2)什么是圆柱的侧面?

圆柱的曲面叫圆柱的侧面。

(3)什么是圆柱的高?

圆柱两个底面的距离叫圆柱的高。

一、要明确复习的目的、任务,从实际出发。

复习绝不能搞成简单的机械重复。应通过复习系统整理小学阶段所学的数学基础知识,理清知识的重点和关键,搞清知识间的内在联系,使学生的四则计算能力、初步的逻辑思维能力和空间观念在原有的基础上得到进一步的提高。

通过复习,学生能系统地掌握有关整数、小数、分数、百分数、比和比例、简易方程等基础知识,并能正确、迅速地进行整数、小数和分教的四则计算,提高计算能力。进一步掌握一常用的计量单位,能够比较熟练地计算一些几何形体的周长、面积和体积,并能进行简单你土地丈量和土石方计算,培养学生的空间观念。能够掌握所学的常见的数量关系和解}答应用题的方法,提高学生用算术方法和列方程解应用题的能力,培养学生逻辑思维能力科解决实际间题的能力。

复习前一定要结合本班学生的实际确定重点,选取的教学方法进行复习。每节课都要有明确的复习目的、要求和主攻方向,这样才能提高复习质量。

二、确定复习的重点及范围。

复习不是简单地重复以前所学的知识,教师必须重视授课的内容,对已学的知识进行系统的整理,复习时,要注意发挥学生的主体作用,调动学生学习的积极性,启发他们自学,自己归纳整理所学的知识,使知识系统化。或启发学生质疑间难,由教师引导学生释疑,以促进学生深入理解知识。下面是十个复习重点:

1)整数和小数的意义、读写法,计量单位和名数的互化。

2)整数、小数、分数的四则混合运算。

3)平面图形的概念、周长和面积。

4)简易方程。

5)数的整除和珠算。

6)分数、百分数的意义和性质及繁分数的化简。

7)立体图形的表面积和体积。

8)比和比例。

9)各类应用题的解法及列方程解应用题。

10)统计表和统计图。

三、采用灵活的复习方法。

在复习时必须注意发挥学生的主动性。促使学生独立思考。复习不应只是让学生把已学的数学知识简单地再现。这样会助长学生死记硬背,应当注意促进学生融会贯通和灵活运用所学的知识。

1)对比分析法。对于学生容易棍淆的一些概念、定义、公式和法则,要让学生在理解的基础上逐渐掌握。并通过对比分析,帮助学生了解它们之间的联系与区别,从而加深记忆。

2)独立阅读法。复习的知识都是已经学过的,教师可选择若干段有联系的教材,让学生独立阅读,教师就关键性的伺题组织讨论,抓住重点或学生不懂之处扼要地进行讲解,扩散学生的思维,培养学生独立分析间题的能力。

3)分类整理法。纵观小学数学的应用题内容,形式多种多样。在教材中的编排也较为分散,特别是几何知识,内容抽象,概念多,公式多,计算繁。因此,我们在复习时必须分类进行整理。使知识系统化、条理化。找出各种知识的本质特征,培养学生的逻辑思维能力。

4)归纳综合法。小学数学内容繁多,知识面广。每部分的内容大多涉及其他部分的知识,横向联系面大,知识的迁移性较强。复习时应由易到难,由一般到特殊,由基本到灵活,充分运用知识的迁移规律,进行综合性的复习。

5)有侧重点地进行复习。随时掌握学生的学习情况,发现学生中的知识缺陷,根据具体情况及时予以补救。要有针对性、有重点地进行复习、完善学生的知识。

相关推荐

热门文档

35 2473566