首页 > 工作范文 > 总结报告 >

初中数学知识点总结及公式实用汇总8篇

网友发表时间 3231650

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“初中数学知识点总结及公式实用汇总8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

初中数学知识点总结及公式【第一篇】

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的`次数仅与字母有关,与单项式的系数无关。

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算。

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n=am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

3、此法则也可以逆用,即:amn=(am)n=(an)m。

初中数学知识点总结及公式【第二篇】

完成作业前一定要再阅读一遍教材,认真回顾老师在课堂上所讲的内容,然后再去写作业。作业一定要养成独立思考的好习惯,针对一道问题要学会多从不同的方法,不同的角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。

在较短的时间里进行知识的巩固,对知识的理解及运用的效果是最佳的,反之则效果不会明显,要做到学而时习之。

2、反思。

学生在完成学习任务的基础上还要进行知识的梳理,多树立数学解题的思想,比如分类的思想,整体的思想,方程的思想,数形结合的思想,方程的思想函数的思想等常用的解题思想。同时还要对重点习题多问几个为什么,如果把这些题目中所示的已知条件改变、添加一些条件,结论与条件互换,原来的结论还存在吗?只有多多练习才会做到游刃有余。

3、整理。

对于数学学习中,如试卷、作业中出现的错误,一定要及时弄懂,分析好自己做错题目的原因,最好在错题本中及时记录下来,每隔一段时间就巩固一下。在学习中绝对不能让同样的错误出现第二次。

数学是人类文化的重要组成部分,良好的数学素养是当代社会每个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教学既要是学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创造能力。学习数学要做到有方法、有计划与合理的安排,只有做到循序渐进,才会获得最终的胜利。

将本文的word文档下载到电脑,方便收藏和打印。

初中数学知识点总结及公式【第三篇】

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

《数列》。

等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。

初中数学知识点总结及公式【第四篇】

初中数学教学,注重培养学生正确的数学情操和几何思维能力。初中怎样学好数学?下面给大家介绍初中数学知识点总结归纳,赶紧来看看吧!

有理数的加法运算。

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

注“大”减“小”是指绝对值的大小。

有理数的减法运算。

减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

合并同类项。

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则。

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程。

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式。

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式。

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式。

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程。

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程。

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

因式分解与乘法。

和差化积是乘法,乘法本身是运算。

积化和差是分解,因式分解非运算。

因式分解。

两式平方符号异,因式分解你别怕。

两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。

因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。

同正则正负就负,异则需添幂符号。

因式分解。

一提二套三分组,十字相乘也上数。

四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。

多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住。

注一提(提公因式)二套(套公式)。

因式分解。

一提二套三分组,叉乘求根也上数。

五种方法都不行,拆项添项去重组。

对症下药稳又准,连乘结果是基础。

二次三项式的因式分解。

先想完全平方式,十字相乘是其次。

两种方法行不通,求根分解去尝试。

比和比例。

两数相除也叫比,两比相等叫比例。

外项积等内项积,等积可化八比例。

分别交换内外项,统统都要叫更比。

同时交换内外项,便要称其为反比。

前后项和比后项,比值不变叫合比。

前后项差比后项,组成比例是分比。

两项和比两项差,比值相等合分比。

前项和比后项和,比值不变叫等比。

解比例。

外项积等内项积,列出方程并解之。

求比值。

由已知去求比值,多种途径可利用。

活用比例七性质,变量替换也走红。

消元也是好办法,殊途同归会变通。

正比例与反比例。

商定变量成正比,积定变量成反比。

正比例与反比例。

变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。

判断四数成比例。

四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。

判断四式成比例。

四式是否成比例,生或降幂先排序。

两端积等中间积,四式便可成比例。

比例中项。

成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。

比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。

有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。

根式与无理式。

表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。

被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。

被开方式有字母,又可称为无理式。

求定义域。

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。

限制条件不唯一,不等式组求解集。

解一元一次不等式。

先去分母再括号,移项合并同类项。

系数化“1”有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。

同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负也变号。

解一元一次不等式组。

大于头来小于尾,大小不一中间找。

大大小小没有解,四种情况全来了。

同向取两边,异向取中间。

中间无元素,无解便出现。

幼儿园小鬼当家,(同小相对取较小)。

敬老院以老为荣,(同大就要取较大)。

军营里没老没少。(大小小大就是它)。

大大小小解集空。(小小大大哪有哇)。

解一元二次不等式。

首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。

a正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。

方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。

用平方差公式因式分解。

异号两个平方项,因式分解有办法。

两底和乘两底差,分解结果就是它。

用完全平方公式因式分解。

两平方项在两端,底积2倍在中部。

同正两底和平方,全负和方相反数。

分成两底差平方,方正倍积要为负。

两边为负中间正,底差平方相反数。

一平方又一平方,底积2倍在中路。

三正两底和平方,全负和方相反数。

分成两底差平方,两端为正倍积负。

两边若负中间正,底差平方相反数。

用公式法解一元二次方程。

要用公式解方程,首先化成一般式。

调整系数随其后,使其成为最简比。

确定参数abc,计算方程判别式。

判别式值与零比,有无实根便得知。

有实根可套公式,没有实根要告之。

用常规配方法解一元二次方程。

左未右已先分离,二系化“1”是其次。

一系折半再平方,两边同加没问题。

左边分解右合并,直接开方去解题。

该种解法叫配方,解方程时多练习。

用间接配方法解一元二次方程。

已知未知先分离,因式分解是其次。

调整系数等互反,和差积套恒等式。

完全平方等常数,间接配方显优势。

注恒等式。

解一元二次方程。

方程没有一次项,直接开方最理想。

如果缺少常数项,因式分解没商量。

b、c相等都为零,等根是零不要忘。

b、c同时不为零,因式分解或配方,

也可直接套公式,因题而异择良方。

正比例函数的鉴别。

判断正比例函数,检验当分两步走。

一量表示另一量,有没有。

若有再去看取值,全体实数都需要。

区分正比例函数,衡量可分两步走。

一量表示另一量,是与否。

若有还要看取值,全体实数都要有。

正比例函数的图象与性质。

正比函数图直线,经过和原点。

k正一三负二四,变化趋势记心间。

k正左低右边高,同大同小向爬山。

k负左高右边低,一大另小下山峦。

一次函数。

一次函数图直线,经过点。

k正左低右边高,越走越高向爬山。

k负左高右边低,越来越低很明显。

k称斜率b截距,截距为零变正函。

反比例函数。

反比函数双曲线,经过点。

k正一三负二四,两轴是它渐近线。

k正左高右边低,一三象限滑下山。

k负左低右边高,二四象限如爬山。

二次函数。

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

a定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

a定开口及大小,开口向上是正数。

绝对值大开口小,开口向下a负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

注基础抛物线。

直线、射线与线段。

直线射线与线段,形状相似有关联。

直线长短不确定,可向两方无限延。

射线仅有一端点,反向延长成直线。

线段定长两端点,双向延伸变直线。

两点定线是共性,组成图形最常见。

一点出发两射线,组成图形叫做角。

共线反向是平角,平角之半叫直角。

平角两倍成周角,小于直角叫锐角。

直平之间是钝角,平周之间叫优角。

互余两角和直角,和是平角互补角。

一点出发两射线,组成图形叫做角。

平角反向且共线,平角之半叫直角。

平角两倍成周角,小于直角叫锐角。

钝角界于直平间,平周之间叫优角。

和为直角叫互余,互为补角和平角。

证等积或比例线段。

等积或比例线段,多种途径可以证。

证等积要改等比,对照图形看特征。

共点共线线相交,平行截比把题证。

三点定型十分像,想法来把相似证。

图形明显不相似,等线段比替换证。

换后结论能成立,原来命题即得证。

实在不行用面积,射影角分线也成。

只要学习肯登攀,手脑并用无不胜。

解无理方程。

一无一有各一边,两无也要放两边。

乘方根号无踪迹,方程可解无负担。

两无一有相对难,两次乘方也好办。

特殊情况去换元,得解验根是必然。

解分式方程。

先约后乘公分母,整式方程转化出。

特殊情况可换元,去掉分母是出路。

求得解后要验根,原留增舍别含糊。

列方程解应用题。

列方程解应用题,审设列解双检答。

审题弄清已未知,设元直间两办法。

列表画图造方程,解方程时守章法。

检验准且合题意,问求同一才作答。

添加辅助线。

学习几何体会深,成败也许一线牵。

分散条件要集中,常要添加辅助线。

畏惧心理不要有,其次要把观念变。

熟能生巧有规律,真知灼见靠实践。

图中已知有中线,倍长中线把线连。

旋转构造全等形,等线段角可代换。

多条中线连中点,便可得到中位线。

倘若知角平分线,既可两边作垂线。

也可沿线去翻折,全等图形立呈现。

角分线若加垂线,等腰三角形可见。

角分线加平行线,等线段角位置变。

已知线段中垂线,连接两端等线段。

辅助线必画虚线,便与原图联系看。

两点间距离公式。

同轴两点求距离,大减小数就为之。

与轴等距两个点,间距求法亦如此。

平面任意两个点,横纵标差先求值。

差方相加开平方,距离公式要牢记。

矩形的判定。

任意一个四边形,三个直角成矩形;。

对角线等互平分,四边形它是矩形。

已知平行四边形,一个直角叫矩形;。

两对角线若相等,理所当然为矩形。

菱形的判定。

任意一个四边形,四边相等成菱形;。

四边形的对角线,垂直互分是菱形。

已知平行四边形,邻边相等叫菱形;。

两对角线若垂直,顺理成章为菱形。

概念课。

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课。

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课。

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

初中数学知识点总结及公式【第五篇】

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

注“大”减“小”是指绝对值的大小。

有理数的减法运算。

减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

合并同类项。

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则。

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程。

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式。

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式。

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式。

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程。

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程。

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

因式分解与乘法。

和差化积是乘法,乘法本身是运算。

积化和差是分解,因式分解非运算。

因式分解。

两式平方符号异,因式分解你别怕。

两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。

因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。

同正则正负就负,异则需添幂符号。

因式分解。

一提二套三分组,十字相乘也上数。

四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。

多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住,

备考资料。

注一提(提公因式)二*(*公式)。

因式分解。

一提二套三分组,叉乘求根也上数。

五种方法都不行,拆项添项去重组。

对症下药稳又准,连乘结果是基础。

二次三项式的因式分解。

先想完全平方式,十字相乘是其次。

两种方法行不通,求根分解去尝试。

比和比例。

两数相除也叫比,两比相等叫比例。

外项积等内项积,等积可化八比例。

分别交换内外项,统统都要叫更比。

同时交换内外项,便要称其为反比。

前后项和比后项,比值不变叫合比。

前后项差比后项,组成比例是分比。

两项和比两项差,比值相等合分比。

前项和比后项和,比值不变叫等比。

解比例。

外项积等内项积,列出方程并解之。

求比值。

由已知去求比值,多种途径可利用。

活用比例七性质,变量替换也走红。

消元也是好办法,殊途同归会变通。

正比例与反比例。

商定变量成正比,积定变量成反比。

正比例与反比例。

变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。

判断四数成比例。

四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。

判断四式成比例。

四式是否成比例,升或降幂先排序。

两端积等中间积,四式便可成比例。

比例中项。

成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。

比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。

有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。

根式与无理式。

表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。

被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。

被开方式有字母,又可称为无理式。

求定义域。

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。

限制条件不唯一,不等式组求解集。

初中数学知识点总结及公式【第六篇】

都说兴趣是最好的老师,最重要的是要对数学有兴趣,如果厌烦它,是怎么也提不高的。

(二)、理解能力。

数学是理科,理解能力很重要,没有理解能力,你的数学乃至所有理科的学习将举步难行。而理解能力的培养很难,你必须尝试去理解一些对你很难的哲学理论和相对抽象的数学模型。最简单的培养也十分艰辛,需要做到对于一道中等难度的题,看到辅助线能在1分钟以内反应出其做法。其次,对老师所讲的题不仅要懂,而且还要揣摩老师做题时的具体心路历程,这才是为什么很多人数学学得好的基础能力。

(三)、勤奋。

我见过很多很努力但仍学不好理科的同学。数学考试的令人无语之处在于只要你认真按老师的要求学习很容易及格,但要想考上145分靠老师的那点练习则远远不够。即使是对于差生来说,学习仍然有简单易行的方法。掌握正确的方法,才能勤奋有所获。

初中数学知识点总结及公式【第七篇】

中考很重要,数学不简单。下面是中考数学知识点总结完整版,考前过一遍记忆更深刻!

知识点1:一元二次方程的基本概念。

1、一元二次方程3x2+5x-2=0的常数项是-2。

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

知识点2:直角坐标系与点的位置。

1、直角坐标系中,点a(3,0)在y轴上。

2、直角坐标系中,x轴上的任意点的横坐标为0。

3、直角坐标系中,点a(1,1)在第一象限。

4、直角坐标系中,点a(-2,3)在第四象限。

5、直角坐标系中,点a(-2,1)在第二象限。

知识点3:已知自变量的值求函数值。

1、当x=2时,函数y=的值为1。

2、当x=3时,函数y=的值为1。

3、当x=-1时,函数y=的值为1。

知识点4:基本函数的概念及性质。

1、函数y=-8x是一次函数。

2、函数y=4x+1是正比例函数。

3、函数是反比例函数。

4、抛物线y=-3(x-2)2-5的开口向下。

5、抛物线y=4(x-3)2-10的对称轴是x=3。

6、抛物线的顶点坐标是(1,2)。

7、反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数。

1、数据13,10,12,8,7的平均数是10。

2、数据3,4,2,4,4的众数是4。

3、数据1,2,3,4,5的中位数是3。

知识点6:特殊三角函数值。

1、cos30°=。

2、sin260°+cos260°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知识点7:圆的基本性质。

1、半圆或直径所对的`圆周角是直角。

2、任意一个三角形一定有一个外接圆。

3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4、在同圆或等圆中,相等的圆心角所对的弧相等。

5、同弧所对的圆周角等于圆心角的一半。

6、同圆或等圆的半径相等。

7、过三个点一定可以作一个圆。

8、长度相等的两条弧是等弧。

9、在同圆或等圆中,相等的圆心角所对的弧相等。

10、经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系。

1、直线与圆有唯一公共点时,叫做直线与圆相切。

2、三角形的外接圆的圆心叫做三角形的外心。

3、弦切角等于所夹的弧所对的圆心角。

4、三角形的内切圆的圆心叫做三角形的内心。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、垂直于半径的直线是圆的切线。

8、圆的切线垂直于过切点的半径。

初中数学知识点总结及公式【第八篇】

完成作业前一定要再阅读一遍教材,认真回顾老师在课堂上所讲的内容,然后再去写作业。作业一定要养成独立思考的好习惯,针对一道问题要学会多从不同的方法,不同的角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。

在较短的时间里进行知识的巩固,对知识的理解及运用的效果是最佳的,反之则效果不会明显,要做到学而时习之。

2、反思。

学生在完成学习任务的基础上还要进行知识的梳理,多树立数学解题的思想,比如分类的思想,整体的思想,方程的思想,数形结合的思想,方程的思想函数的思想等常用的解题思想。同时还要对重点习题多问几个为什么,如果把这些题目中所示的已知条件改变、添加一些条件,结论与条件互换,原来的结论还存在吗?只有多多练习才会做到游刃有余。

3、整理。

对于数学学习中,如试卷、作业中出现的错误,一定要及时弄懂,分析好自己做错题目的原因,最好在错题本中及时记录下来,每隔一段时间就巩固一下。在学习中绝对不能让同样的错误出现第二次。

数学是人类文化的重要组成部分,良好的数学素养是当代社会每个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教学既要是学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创造能力。学习数学要做到有方法、有计划与合理的安排,只有做到循序渐进,才会获得最终的胜利。

相关推荐

热门文档

35 3231650