首页 > 工作范文 > 总结报告 >

学生数学知识点总结(10篇)

网友发表时间 2380694

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“学生数学知识点总结(10篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

学生数学知识点总结【第一篇】

1.下列几种关于投影的说法不正确的是()。

a.平行投影的投影线是互相平行的。

b.中心投影的投影线是互相垂直的。

c.线段上的点在中心投影下仍然在线段上。

d.平行的直线在中心投影中不平行。

2.根据下列对于几何结构特征的描述,说出几何体的名称:

(1)由7个面围成,其中两个面是互相平行且全等的五边形,其他面都是全等的矩形;。

(3)一个等腰直角三角形绕着底边上所在的直线旋转360度形成的封闭曲面所围成的图形.

学生数学知识点总结【第二篇】

都说兴趣是最好的老师,最重要的是要对数学有兴趣,如果厌烦它,是怎么也提不高的。

(二)、理解能力。

数学是理科,理解能力很重要,没有理解能力,你的数学乃至所有理科的学习将举步难行。而理解能力的培养很难,你必须尝试去理解一些对你很难的哲学理论和相对抽象的数学模型。最简单的培养也十分艰辛,需要做到对于一道中等难度的题,看到辅助线能在1分钟以内反应出其做法。其次,对老师所讲的题不仅要懂,而且还要揣摩老师做题时的具体心路历程,这才是为什么很多人数学学得好的基础能力。

(三)、勤奋。

我见过很多很努力但仍学不好理科的同学。数学考试的令人无语之处在于只要你认真按老师的要求学习很容易及格,但要想考上145分靠老师的那点练习则远远不够。即使是对于差生来说,学习仍然有简单易行的方法。掌握正确的方法,才能勤奋有所获。

学生数学知识点总结【第三篇】

1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.

2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.

3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.

4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.

5.无限不循环小数又叫无理数.

6.有理数和无理数统称实数.

7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.

1.平方与开平方互为逆运算.

2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.

3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.

4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.

5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.

1.被开方数一定是非负数.

,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.

3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。

学生数学知识点总结【第四篇】

1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2、几何概型的概率公式:p(a)=构成事件a的区域长度(面积或体积);

试验的全部结果所构成的区域长度(面积或体积)

3、几何概型的特点:

1)试验中所有可能出现的结果(基本事件)有无限多个;

2)每个基本事件出现的可能性相等、

4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

通过以上对于几何概型的基本知识点的.梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件a的概率可以用“事件a包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。

学生数学知识点总结【第五篇】

二忌“学而不思,囫囵吞枣”

导致很多同学身陷题海,不能自拔的另一个重要原因,就是“学而不思”,题目是知识的载体,有的同学做了很多题目,却仍然没有明白它们代表同一知识点,不但不能举一反三,甚至举三不能反一,其真正的原因,是他们没有养成思考、总结的习惯。华罗庚先生说过:“譬如我们读一本书,厚厚的一本,再加上我们自己的注解,就愈读愈厚,我们自己知道的东西也就‘由薄到厚’了”。“‘学’并不到此为止,‘懂’并不到此为透,所谓由厚到薄是消化提炼的过程,即把那些学到的东西,经过咀嚼、消化,融会贯通,提炼出关键性的东西来。”这段话充分说明了思考在学习过程中的重要性。以下是“学而不思”的几种具体表现,也许你就有过这样的经历。

2.从来不去想,怎样发展自己的强项,怎样弥补自己的不足,只知道老师叫干什么就干什么,布置了作业就做,发了试卷就考。

5.一个自己所犯的错误,只是轻轻的告诉自己,下次要注意,只简单地归结为粗心,但下次还是犯同样的错误。

学而不思,往往就囫囵吞枣,对于外界的东西,来者不拒,只知接受,不会挑选,只知记忆,不会总结。你没有在学习过程中“加入自己的注解”,怎能做到华罗庚先生说的“由薄到厚”,你不会“提炼出关键性的东西来”,就更不能“由厚到薄”,找到问题地本质,那么,你的学习就很难取得质的飞跃。

学生数学知识点总结【第六篇】

一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法。

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数的性质。

注:一次函数一般形式y=kx+b(k不为0)。

a)k不为0。

b)x的指数是1。

c)b取任意实数。

一次函数y=kx+b的图像是经过(0,b)和(—b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。(当b0时,向上平移;b0时,向下平移)。

学生数学知识点总结【第七篇】

1、配方法;所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成—个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。

2、因式分解法,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,中学课本上介绍有提取公因式法、公式法、分组分解法、十字相乘法等都是因式分解的常用手段。

3、换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、构造法;在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起—座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

5、反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为两种:一种是相反的结论只有一种,另一种是相反的结论有无数种。前者需要把相反的结论推翻,后者只要举出一个反例,就达到了证明的目的。

学生数学知识点总结【第八篇】

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题。

1)费用、成本最省问题。

2)利润、收益最大问题。

3)面积、体积最(大)问题。

1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

对于含有参数的一元二次不等式解的讨论。

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

拓展阅读。

说明:以下内容为本文主关键词的百科内容,一词可能多意,仅作为参考阅读内容,下载的文档不包含此内容。每个关键词后面会随机推荐一个搜索引擎工具,方便用户从多个垂直领域了解更多与本文相似的内容。

4、因式分解:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。基本结论:分解因式为整式乘法的逆过程。高级结论:在高等代数上,因式分解有一些重要结论,在初等代数层面上证明很困难,但是理解很容易。

学生数学知识点总结【第九篇】

考核要求:

〔 2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。

考核要求:

〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

〔 2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考核要求

〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。

〔1〕计算前要先确定是否为可能事件;

〔2〕用枚举法或画〝树形图〞方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考核要求:

〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考核要求:

〔1〕知道统计的意义和一般研究过程;

〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考核要求:

〔1〕理解平均数、加权平均数的概念;

〔2〕掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考核要求:

〔 1〕知道中位数、众数、方差、标准差的概念;

〔 2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

〔2〕求中位数之前必须先将数据排序。

〔 1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的`观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到〝一石多鸟〞的效果。研究解决有关的实际生活中问题,然后作出合理的解决。

一般说来,〝教师〞概念之形成经历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕 ?春秋谷梁传疏?曰:〝师者教人以不及,故谓师为师资也〞。

这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。

韩非子也有云:“今有不才之子?…师长教之弗为变〃其“师长〃当然也指教师。这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

学生数学知识点总结【第十篇】

整数零负整数有限小数或无限循环小数。

正分数。

分数。

负分数小数。

1.正无理数。

无理数无限不循环小数。

负无理数。

2、数轴:规定了(画数轴时,要注童上述规定的三要素缺一个不可),

实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数。

3、相反数与倒数;?a(a?0)4、绝对值?|a|??0(a?0)。

5、近似数与有效数字;??a(a?0)?

6、科学记数法。

7、平方根与算术平方根、立方根;

8、非负数的性质:若几个非负数之和为零,则这几个数都等于零。

1.无理数:无限不循环小数。

算术平方根定义如果一个非负数x的平方等于a,即x2?a。

那么这个非负数x就叫做a的算术平方根,记为a,

算术平方根为非负数a?0。

叫做a的平方根,记为?a?

正数的立方根是正数???立方根?负数的立方根是负数????0的立方根是0???

定义:如果一个数x的立方等于a,即x3?a,那么这个数x?

就叫做a的立方根,记为3a.?

概念有理数和无理数统称实数。

绝对值、相反数、倒数的意义同有理数。

实数与数轴上的点是一一对应。

实数的运算法则、运算规律与有理数的运算法则?

运算规律相同。

相关推荐

热门文档

35 2380694