首页 > 工作范文 > 心得体会 >

小学六年级数学教案圆柱的体积【汇编10篇】

网友发表时间 2461781

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“小学六年级数学教案圆柱的体积【汇编10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

小学六年级数学教案圆柱的体积【第一篇】

在上圆柱体积公式前,我精心备课,准备好教具,课堂上把教给学生,让他们四人一小组,去合作演示,充分讨论探索,我在教室里引导学生总结归纳;圆柱体能拼成近似的长方体,长方体的底面积等于圆柱体的底面积,长方体的高就是圆柱的高。因此,长方体的体积就是圆柱的体积,从而推导出v=sh.学生在课堂中合作十分融洽,我自己也觉得这堂课设计得非常不错,按照备课的程序,接下来就是加深学生对公式的运用、巩固。突然,一双小手高高举起“老师,我有不同方法计算圆柱的体积”我一愣,备课时根本没有考虑到用其它方法;我灵机一动,对,让他说出自己的方法,这位同学用v=ch/2r,即圆柱侧面积的一半乘以底面半径,我当时没有下结论,把这个“球”踢给学生,让他们一起探讨这种说法是否正确;不久学生都异口同声的肯定了。这种新颖的创新思维,课堂上响起了热烈的掌声。

这堂课后,我的心久久不能平静,学生独特见解、探索,使我看到学生的创新潜力是巨大的',重在教师的开发、引导。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力。”在教学中,孩子们的创新意识常常体现在一些奇思妙想中,有的也许细稚,有的也许太“出格,”但这些却是学生创新精思维的闪现,必须珍惜,这样才能培养出具有创新精神的时代新人。在今后的教学中把充足的探究时间与空间交给学生,改变以教师为主体的传统观念,以学生为主体,教师为主导,让学生成为课堂的真正主人。

小学六年级数学教案圆柱的体积【第二篇】

1、一个圆柱,它的高是8厘米,侧面积是平方厘米,它的底面积是()。

2、把一个底面积是平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了()平方厘米。

3、把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了()平方厘米。

4、把一根直径是20厘米,长是2米的圆柱形木材锯成同样的3段,表面积增加了()立方厘米。

5、一个圆柱体的侧面积是平方厘米,底面半径是3厘米,它的高是多少厘米?

6、一个圆柱的侧面积是平方米,底面半径是4分米,它的高是多少分米?

10、一个无盖的圆柱形铁皮水桶,底面直径是米,高是米,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)。

11、一个盛奶粉的圆柱形铁罐,底面周长是厘米,高是分米,做一个这样的铁罐至少需用铁皮多少平方厘米?(接口处不计,得数保留整十平方厘米)。

小学六年级数学教案圆柱的体积【第三篇】

本节课的教学内容是六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是活的,这样的知识对学生自身智力和创造力发展会起到积极的.推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的容器。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

小学六年级数学教案圆柱的体积【第四篇】

优点:

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

不足:

再教设想:

在课的.设计上以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,在学生动手实践、交流讨论和思考的时间上教师应合理把握。

小学六年级数学教案圆柱的体积【第五篇】

教学目标:

1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学重点:目标1。

教学难点:目标2。

教学过程:

活动一:复习旧知,巩固学过的公式。

1、一个直径是100毫米的圆,求周长。

2、一个半径3厘米的圆,求周长和面积。

3、一个长为3米,宽为2米的长方形,它的面积是多少?

4、出示圆柱体的模型,说说它有什么特征?

活动二;探究新知。

1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)。

要解决这个问题,就是求什么?

2、圆柱的表面积包括哪几部分?

3、圆柱的表面积的计算关键在哪一部分?

4、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?

3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。

4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

5)请你来总结一下圆柱侧面积的计算方法。

6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

活动三:新知识的运用。

1、求底面半径是10厘米,高30厘米的圆柱的表面积。

2、教师板书:

侧面积:2╳╳10╳30=1884(平方厘米)。

底面积:╳10╳10=314(平方厘米)。

表面积:1884+314╳2=2512(平方厘米)。

要求按步骤进行书写。

2、试一试。

求至少需要多少铁皮,就是求水桶的表面积。

这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。

3、练一练。书第6页第1题。

3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。

小学六年级数学教案圆柱的体积【第六篇】

过程与方法。

通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。

情感态度价值观。

感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。

教学重点。

教学难点。

圆柱体积公式的推导过程。

(一)引入新课。

提问:长方体和正方体的体积公式是什么?

(正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。

(二)探索新知。

1.圆柱体积公式的猜想。

在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。

提问:长方体和正方体的体积相等吗?

预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。

预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。

2.圆柱体积公式的推导。

预设:可以把圆柱转换成长方体。

预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的'份数越多,拼成的图形就越接近长方体。

组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。

预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。

3.圆柱体积公式的推出。

用大写字母v表示圆柱的体积,s表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。

预设:v=sh。

教师强调字母v、s是大写,h是小写。

追问:回顾探究圆柱体积公式的过程,有哪些心得体会?

预设1:可以用长方体体积公式推导出圆柱体体积公式;

预设2:把圆柱转化成长方体,与探索圆面积的方法类似;

预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。

(三)课堂练习。

试一试。

一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米?

(四)小结作业。

提问:通过本节课的学习有什么收获?

课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。

四、板书设计。

小学六年级数学教案圆柱的体积【第七篇】

一、估一估。

二、填一填。

1、796接近,951接近()。

2、一辆自行车409元,可以看作大约()元,也可以看作大约()元。

3、二年级有591人,可以看作大约()人,也可以看作大约()人。

4、一年级有318人,可以看作大约()人,二年级有294人,可以看作大约()人。两个年级一共大约有()人。

5、406+394想:406接近(),394接近(),()+()=()。

小学六年级数学教案圆柱的体积【第八篇】

身为一位优秀的教师,我们的任务之一就是课堂教学,写教学反思能总结我们的教学经验,教学反思应该怎么写才好呢?以下是网友分享的“小学六年级数学教案圆柱的体积【汇编10篇】”,供大家参考借鉴,希望可以帮助到有需要的朋友。

本节的教学重难点是:

1、探索并掌握圆柱体积公式,能计算圆柱的体积。

2、在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学方法:我利用课件演示和实物演示来解决。让学生学会转化的数学思想。

成功之处:

1、利用迁移规律引入新课,为学生创设良好的.学习情境;

2、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;

3、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果。

不足之处:

1、个别学生还是对公式不会灵活应用。

2、练习题有些多,应选择一些有代表性的题,这样小测验就能有充足的时间了。

3、关注学生的有些少,尤其是应关注做错的学生,应知道为什么错,及时在课堂评价出结果会更好。

4、老师讲得多,应放手让学生自己观察自己处理自己总结,会更好。

小学六年级数学教案圆柱的体积【第九篇】

优点:

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

不足:

再教设想:

在课的.设计上以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,在学生动手实践、交流讨论和思考的时间上教师应合理把握。

将本文的word文档下载到电脑,方便收藏和打印。

小学六年级数学教案圆柱的体积【第十篇】

教材第10~12页圆柱的体积公式,例1、例2和练一练,练习二第1~5题。

1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。

2.培养学生初步的空间观念和思维能力;让学生认识转化的思考方法。

圆柱体积计算公式的推导。

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)c=米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积高)。

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)。

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。(可分小组进行)。

(2)回顾圆面积公式的推导。(切拼转化)。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积高)用字母表示:。(板书:v=sh)。

(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4.教学例1。

出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)。

米=90厘米2490=2160(立方厘米)。

5.做练习二第1题。

让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的?

6.教学试一试一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲试一试小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。

7.教学例2。

出示例2,审题。小组讨论计算方法,然后学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位,结果保留整数。)。

相关推荐

热门文档

39 2461781