首页 > 工作范文 > 范文大全 >

2024年初二数学综合实践报告样例【优质5篇】

网友发表时间 2418815

【导读预览】此篇优秀范文“2024年初二数学综合实践报告样例【优质5篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

初二数学综合实践报告【第一篇】

1、边:两组对边分别平行;四条边都相等;相邻边互相垂直。

2、内角:四个角都是90°;

3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;

4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。

5、正方形具有平行四边形、菱形、矩形的一切性质。

6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的%;正方形外接圆面积大约是正方形面积的157%。

初二数学综合实践报告【第二篇】

2、相似三角形判定定理1两角对应相等,两三角形相似(asa)

3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

4、判定定理2两边对应成比例且夹角相等,两三角形相似(sas)

5、判定定理3三边对应成比例,两三角形相似(sss)

7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

8、性质定理2相似三角形周长的比等于相似比

9、性质定理3相似三角形面积的比等于相似比的平方

10、边角边公理有两边和它们的夹角对应相等的两个三角形全等

11、角边角公理有两角和它们的夹边对应相等的两个三角形全等

12、推论有两角和其中一角的对边对应相等的两个三角形全等

13、边边边公理有三边对应相等的两个三角形全等

14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

15、全等三角形的对应边、对应角相等

1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3、平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5、直角三角形斜边上的中线等于斜边的一半。

6、矩形的定义:有一个角是直角的平行四边形。

7、矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。ac=bd

8、矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。

9、菱形的定义:邻边相等的平行四边形。

10、菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11、菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。s菱形=1/2×ab(a、b为两条对角线)

12、正方形定义:一个角是直角的菱形或邻边相等的矩形。

13、正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

14、正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。

15、梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

16、直角梯形的定义:有一个角是直角的梯形

17、等腰梯形的定义:两腰相等的梯形。

18、等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

19、等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

初二数学综合实践报告【第三篇】

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

初二数学综合实践报告【第四篇】

对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

初二数学综合实践报告【第五篇】

逆定理的内容:

如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

说明:

(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

(1)确定最大边;

(2)算出最大边的平方与另两边的平方和;

(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。

相关推荐

热门文档

48 2418815