首页 > 工作范文 > 范文大全 >

数字化设计与制造技术课程论文(精编5篇)

网友发表时间 53909

发表时间

【导言】此例“数字化设计与制造技术课程论文(精编5篇)”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

先进制造技术课程的论文1

实用性: 首先先进制造技术应该能够为我们所用,是实用的,而不是观念上得东西,能够真正为人类造福的。其是一项面向工业应用并且兼备有实用性的新技术, 它的发展是针对某一具体制造业的需求而发展起来的先进的、适用的制造技术 , 它有明确的需求导向的特征, 其应用特别注意产品最好的实际效果 , 以提高制造业的综合经济效益和社会效益为最终目的。

先进性: 其次,从他的命名来看,他显然应当具有先进性,这符合社会的发展,能够带动社会的生产力的前进才是他的关键所在。它从传统的工艺发展而来 , 既保留了过去制造技术中的有效要素, 又吸收了各种高新技术的最新成果 , 并与新技术实现了局部或系统集成,先进制造技术的核心是优质、高效、低耗、清洁、灵活的工艺, 这些工艺也必须是经过优化的先进工艺 。

广泛性:再者,他应当具有广泛的应用,而不是单单用于某个狭窄的方面或者是个狭窄的技术。他应当能够为现在生产制造的绝大部分所使用,这样才能体

现先进制造技术的存在价值,才能激发科学研究者去研究发展它的决心。 先进制造技术是由计算机技术、设计技术、自动化技术、系统管理技术组成, 渗透到产品的设计、制造、生产组织、市场营销及回收再生等所有领域及其全过程。

动态特性: 而且先进制造技术是一类技术,而不是单指某项技术,拥有一定的目标。是一个技术群, 并且是针对一定的应用目标 , 不断地吸收各种高新技术逐渐形成的新技术 , 因此这个技术群是一个动态技术 , 不同时期有不同的特点 , 通过不同形式发展不同国家和地区的制造技术。

集成性: 先进制造技术由于专业、学科间的不断渗透、交叉、融合 , 界限逐渐淡化甚至消失 , 技术趋于系统化 , 已发展成为集机械、电子、信息、材料和管理技术于一体的新兴交叉学科 。

效益、成本和质量的统一性: 先进制造技术能对市场变化作出敏捷的反应, 提出提高产品劳动生产率的有效途径 , 并且将其转变为以时间为核心的效率、成本、质量的有机结合, 使其达到高度的统一 ,最终在市场竞争中立于不败之地

[2]。

2先进制造技术目前的发展及几种常见的技术介绍: 我国现阶段正大力发展先进制造技术,但是与国外顶尖技术还是有一定的差距,把我国的制造技术提高上去才能真正增强国家的综合实力,才能真正提高国家的科技竞争力,所以应当大力发展先进制造技术。

主要的核心技术及发展情况:

快速成形, 英文是Rapid Prototyping, 是当代先进制造技术的一种。 快速成形技术是计算机辅助设计及制造技术、逆向工程技术、分层制造技术(SFF)、材料去除成形(MPR)材料增加成形(MAP)技术以及它们的集成。 通俗一点说, 快速成形就是利用在三维造型软件中已经设计的数字三维模型, 通过快速成型设备(快速成形机), 制造实体的三维模型的技术。

快速成形技术有以下特点:

(1)制造原型所用的材料不限,各种金属和非金属材料均可使用

(2) 原型的复制性、互换性高

(3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越 [3]

(4) 加工周期短,成本低,成本与产品复杂程度无关,一般与传统加工模型的工艺相比, 快速成形在制造费用上可以降低80%,加工周期可以节约70%以上

(5) 高度技术集成,可实现了设计制造一体化

曾经和目前仍然为主流的快速成形技术有以下几种:

立体光刻技术 (SL/SLA)

SLA的工作原理是以液态光敏树脂 (例如一种特殊的环氧树脂)为造型材料,采用紫外激光器为能源:一种是氦一福激光器 (波长 325nm,功率15~50MW),另一种是氨离子激光器(波长351~365nm,功率 100~500MW ),激光束光斑大小为~3mm。由CAD设计出三维模型后将模型进行水平切片,分成为成千上万个薄层,生成分层工艺信息,按计算机所确定的轨迹,控制激光束的扫描轨迹,使被扫描区域内的液态光敏树脂固化,形成一层薄固体截面后,升降机构带动工作台下降一层高度,其上复盖另一层液态光敏树脂,接着进行第二层激光扫描固化,新固化的一层牢固地粘在前一层上,就这样逐层叠加直到完成整个模型的制作。一般每个薄层的厚度~,模型从树脂中取出后,进行最终硬化处理加以打光、电镀、喷漆或着色等即可。

发展趋势:稳步发展。 SL/SLA技术的缺点在于材料成本和设备维护成本十分高昂。因为紫外激光器的使用寿命只能维持在1年左右, 同时作为成形材料的光敏树脂也需要每年更换, 仅此两项便需要每年50万人民币以上的维护成本。 此外, SL/SLA快速成形设备结构复杂, 零件众多, 日常的维护保养也十分不易。 但是, 由于SL/SLA技术的成形精度非常高, 可以制造十分细小的模型或表面特征, 这一项优势似的SL/SLA技术仍然具有十分广阔的应用前景。

薄材叠层成形技术 (LOM)

薄材叠层成形技术是通过

对原料纸进行激光切割与粘合的方式来形成零件的。其工艺是先将单面涂有热熔胶的纸通过加热辊加压粘结在一起,此时位于其上方的激光器按照分层CAD模型所获得的数据,将一层纸切割成所制零件的内外轮廓,然后新的一层纸再叠加在上面,通过热压装置,将下面已经切割的层粘合在一起,激光再次进行切割。切割时工作台连续下降,切割掉的纸片仍留在原处,起支撑和固化作用,纸片的。一般厚度为~。该方法特点是成形速率高,成本低廉。

发展趋势:已经淘汰。 LOM技术是快速成形技术发展过程中曾今为了寻找成本相对低廉, 精度相对合理的解决方案的一种尝试性探索。 客观而言, LOM设备的成形精度适中, 可以制造一些具有表面纹路的模型, 同时, 成形速度也相对较快。 但是, 由于LOM技术的材料利用率很低(10%-20%), 使得实际的材料成本并不便宜。 此外, LOM设备的稳定性和安全性也存在严重隐患,在实际运行过程中, 纸质、木质和PVC材料在激光照射极易着火, 引起事故。 因此, 目前LOM技术在全世界范围内已经几乎停止使用。

选区激光粉末烧结技术 (SLS)

选择性激光烧结 (SLS)的成形方法是。在层面制造与逐层堆积的过程中,用激光束有选择地将可熔化粘结的金属粉末或非金属粉末 (如石蜡、塑料、树脂沙、尼龙等)一层层地扫描加热,使其达到烧结温度并烧结成形;当一层烧结完后,工作台降下一层的高度,铺下一层的粉末,再进行第二层的扫描,新烧结的一层牢固地粘结在前一层上,如此重复,最后烧结出与CAD模型对应的三维实体。选择性激光烧结 (SLS)突出的优点在于它是以粉末作为成形材料,所使用的成形材料十分广泛,从理论上来说,任何被激光加热后能够在粉粒间形成原子间连接的粉末材料都可以作为SLS的成形材料。

展趋势:停滞不前。

熔融沉积成形技术 (MEM)

MEM的基本原理是:加热喷头在计算机的控制下,根据截面轮廓信息作X--Y平面运动和高度Z方向的运动,丝材 (如塑料丝、石腊质丝等)由供丝机构送至喷头,在喷头中加热、熔化,然后选择性地涂覆在工作台上,快速冷却后形成一层截面轮廓,层层叠加最终成为快速原型。用此法可以制作精密铸造用蜡模、铸造用母模等。

发展趋势:快速发展。 MEM是在相对近期发展处的快速成形技术, 其有点在于安全性高, 设备稳定性高, 成形精度高而运行成本低。 因为含有特殊配方的ABS工程塑料本身的物理和化学性质, 使得MEM技术制作的模型具有很好的强度和韧度, 可以经受锻造、钻孔、打磨等高强度的测试。 加之ABS丝材成本相对低廉, 设备设计简洁, 维护方便等优势, 使得MEM技术目前后来居上, 成本工人的应用最广泛的快速成形技术。

熟读唐诗三百首,不会做诗也会吟。以上这5篇数字化设计与制造技术课程论文是来自于山草香的数字化设计与制造技术的相关范文,希望能有给予您一定的启发。

数字化民用飞机设计与制造构想2

数字化民用飞机设计与制造构想

阐述了数字化制造概念和特点,从项目管理方式、构建数字化协同工作平台,开展精益生产研究、建设多种计算机辅助设计环境融合软件等方面进行了分析,并提出构想性建议。

作 者:唐海燕 高炳哲 孙文邦  作者单位:空军航空大学,长春,130000 刊 名:航空精密制造技术  ISTIC英文刊名:AVIATION PRECISION MANUFACTURING TECHNOLOGY 年,卷(期): 46(2) 分类号:V262 关键词:数字制造   飞机   构想   digital manufacturing   aircraft   conception

模具的数字化设计与快速制造技术3

模具的数字化设计与快速制造技术

模具是现代化工业生产中的重要技术之一,其设计和制造水平的。高低成为衡量一个国家综合制造能力的重要标志[1].其中,数字化设计和快速制造是决定模具制造周期和成本的两大核心技术,成为提升模具技术水平的关键因素。

作 者:黄树槐 史玉升 魏青松 刘锦辉 章文献  作者单位:华中科技大学 刊 名:航空制造技术  ISTIC英文刊名:AERONAUTICAL MANUFACTURING TECHNOLOGY 年,卷(期): “”(2) 分类号:V2 关键词:

数字化设计与制造技术课程论文4

数字化设计与制造技术课程论文

数字化测量技术是数字化制造技术中的关键技术之一。开发亚微米、纳米级高精度测量仪器,提高环境适应能力,增强鲁棒性,使精密测量装备从计量室进入生产现场,集成、融入加工机床和制造系统,形成先进的数字化闭环制造系统,是当今精密测量技术的发展趋势。

数字化精密测量仪器的新动向――进入生产现场,非接触扫描测量倍受重视

三坐标测量机作为精密测量仪器的基本型主导产品,继续在机械制造业中得到重视和发展。以三坐标测量机为代表的精密测量仪器进入车间、服务于生产现场是发展的一个重要趋势。例如,LEITZ公司的精密三坐标测量机在车间用于测量大型齿轮就是一例。将数字化测量系统集成到数控加工机床上是另一个发展趋势。例如,秦川机床厂的CNC成型齿轮磨床集成了在机齿轮测量系统。与光学/激光非接触式扫描测量技术相结合,实现多功能、多种传感器的集成和融合,使坐标测量技术的应用更加丰富,更适用于生产现场。

①汽车大型覆盖件的非接触扫描测量精确而快速

配备有光学/激光式非接触扫描传感器的水平臂三坐标测量机实现了对汽车大型覆盖件的快速精密检测。德国ZEISS公司和瑞典HEXAGON集团等世界著名三坐标测量机制造厂在该领域进行了开发。瑞典HEXAGON集团所属DEA公司的PRIMAC1系列水平臂测量机在CW43L型连续伺服关节测座上,可配备触发式测头、连续扫描测头、光学或激光扫描测头等多种测头,以适应不同测量环境和任务的要求。德国ZEISS公司的PRORPremium坐标测量机配备有EagleEye导航系统和可控测座,能够在汽车车身大型覆盖件尤其是车身分总成的质量过程控制中,对工件的几何参数、表面和边缘的特征点、间隙和贴合性等实施高速精密测量。

②带激光扫描测量系统的便携式柔性关节臂测量机功能增强

美国CIMCORE公司推出了配备有先进激光扫描测量系统的关节臂测量机。该仪器采用碳纤维材料制造,重量轻而刚性好,其中INFINITE系列的还具有无线通讯功能。仪器采用PC-DMIS软件,测量功能强。配上管件测量系统附件,还可实现对管件的长度、弯曲度、回弹等多种数据的测量和比较。测量范围为的仪器点测重复精度达,空间精度达。用于反求工程时,不仅测量速度快,而且可实现测量过程的实时显示和补漏测量数据的无缝拼接。该仪器可用于三坐标测量、三维造型、产品测绘、反求工程、现场测量以及模具设计制造等涉及到设计、制造、过程检测、在线检测以及产品最终检测等测量工作。美国FARO技术公司的FaroARM系列便携式三坐标测量臂具备类似的技术指标和性能。我国西安爱德华测量机公司也公开展示了自主开发的柔性关节臂测量机的样机。

③轴类零件光电非接触测量仪器发展迅速

汽车制造业的需求大大推进了轴类精密零件非接触测量技术的发展。瑞士TESA公司的TESAScan系列轴类零件快速扫描测量仪采用2个线阵CCD组件,通过工件的回转和轴向移动对工件进行投影扫描,可实现对轴类零件位置误差和形状误差的。精确检测、对截面形状和轮廓度的评估比较以及统计质量分析,还能对零件的局部(如过渡曲线、微小沟槽等)进行放大测量。由于工件立柱可以倾斜,因而能对螺纹、蜗杆、丝杆等进行全参数精度的精确测量,这是该仪器PLUS系列的一大特色。仪器在直径方向上的分辨力为,精度2 ()m,重复性。德国SCHNEIDER的WMM系列轴类及工具测量仪操作简单、测量速度高,特别适用于车间检查站。仪器采用高分辨力的Matrix摄像头,可以快速获取测量数据。仪器数显分辨力为,长度测量不确定度为E2=( L/200)m(L单位为mm)。

④中小尺寸平面类精密零件的二维、三维非接触测量仪器应用广泛

带CCD数字摄像头、激光测头、触发测头的多传感测头光学坐标测量仪器得到了快速发展。除德国MAHR公司的MARVISION系列三维光学坐标测量机、瑞士TESA公司的三坐标成像测量系统TESAVISIO、德国SCHNEIDER公司的SKM系列3D多测头坐标测量机等典型产品外,美国OGP公司等著名厂商也有相应产品展示。日本三丰公司CNC视像测量系统系列产品中的SV350-pro型测量机采用了自制的超高精度、高分辨力、低膨胀玻璃光栅基准尺,仪器分辨力,X、Y轴测量精度为( L/1000)m,Z轴测量精度为(1 2L/1000)m。三丰公司的HyperMF型测量显微镜的X、Y轴测量精度超过日本标准规定的0级,达±( 3L/1000)m,仪器分辨力,是用于精密模具、精密切削刀具以及超小半导体电子元件(如芯片和集成电路等)精密检测的理想选择。国内西安爱德华、东莞万濠、苏州怡信、深圳鑫磊以及北京天地宇等公司也开发了类似产品。贵阳新天光电公司近年注重新品开发,成功推出了JX13C图像处理万能工具显微镜,采用金属光栅和高分辨力的CCD摄像头,仪器测量精度达到( L/100)m,采用半导体激光导向快速确定测量位置。JX15A/B型视频测量显微镜同样采用了CCD数字成像技术,将采集到的被测工件图像送入计算机进行处理,进行相应几何精度的检测,产品技术指标和水平上了一个档次。深圳智泰公司VMT系列的3D影像量测仪,在CCD视觉测量系统上配备上高精度触发式测头,实现了多功能测量。

数控机床精度检测用激光测量技术的新进展

为确保数控切削加工的质量,除了在加工过程中和加工完成后对数控切削加工系统(包括工件在内)进行可行的监控检测外,在加工前对数控机床的精度和性能进行检测,以便确切了解掌握机床质量现状,进而进行必要的调整补偿,使其达到最佳运行性能,是一项非常重要的质量控制措施。

众所周知,国外著名厂商Renishaw、API及HP等公司生产的激光干涉仪测量系统和球杆仪等在数控机床的几何精度和运动精度的检测和监控中,无论在机床制造厂还是机床使用厂,都得到了广泛的应用。Renishaw公司的金牌M10激光干涉测量系统,配备了高精度、高灵敏度的温度、气压、湿度传感器及EC10环境补偿装置,在工作环境下测量精度得到进一步提高;API公司的Rmtea六维激光测量系统可同时测量6个数控机床精度项目的误差,缩短了检测时间,为生产现场数控机床的检测和诊断提供了更为快速高效的精密测量手段。成都工具研究所的MJS系列双频激光干涉仪,分辨力,测量软件覆盖了我国和世界主要工业国的数控机床精度标准评定方法和指标,动态采样功能可用于自动补偿。

美国光动(Optodyne)公司近年推出的基于体对角线的激光矢量测量技术是快速测量和补偿数控机床、加工中心三维空间位置误差的一个新途径。该技术由美国光动公司发明并获得专利,它遵循了(1)和ISO0230-6(2)机床测量标准中对体对角线误差测量的要求。对于构成(X,Y,Z)直角坐标系的三轴机床的21项几何误差,采用传统激光干涉仪等来进行检测相当费时。基于分步体对角线矢量测量原理,光动公司采用专利的激光多普勒位移测量仪,借助大平面反射镜完成四条对角线空间位置误差的测量,获得12组数据。通过计算确定机床12项基本误差(3项位移误差,6项直线度误差和3项垂直度误差),最终得到数控机床三维空间位置(定位)误差。该公司曾介绍了在加工中心上进行实际测量和补偿的应用实例,借此表明该测量新技术在数控加工机床的精度检测和精度补偿上的可行性。对该项测量技术的认识、推广应用的实际效果和前景值得行业关注。

结束语

数字化制造技术是先进制造技术的基础。在数字化制造技术的基础上,通过计算机技术、通讯技术将数控机床、数控刀具、数控测量仪器和加工对象(工件)以及相应的信息集成融合在一起,构成了的一个数字化闭环切削加工系统。可以认为这是CIMS理念中的一种具体实施形式。CIMS应该具有多样性,即具有不同水平和不同层次。从近年数控刀具闭环制造系统和圆柱齿轮、锥齿轮制造闭环系统的发展,可以得到启示:应结合实际,大处着眼,小处着手。专项(产品)数字化闭环制造系统也许是当前CIMS领域的一条切实可行的发展途径。

要提高我国机床工具行业的技术水平,增强竞争力,根本途径就是提高自主创新能力,发展具有自主知识产权的产品和技术。从近几届我国举办的国际机床展览会来看,我国精密工具行业的创新意识不断加强,创新能力不断提高,创新技术成果和产品不断出现。但是,我国精密工具制造行业的发展相比于我国机床制造行业数控机床的发展,无论在规模上还是技术先进程度上都差距较大,远远不能满足和适应先进制造行业如轿车制造业、航空航天制造业、微电子制造业等的需求。工具行业需要紧跟机床制造行业,加强合作,加快发展。

浅谈基于数字化设计制造能力培养的课程群规划论文5

浅谈基于数字化设计制造能力培养的课程群规划论文

当代机械工程领域迈进了数字化制造的时代,在产品制造活动的全生命过程中利用数字化的信息实现产品和制造活动的表达、组织和运行,数字化制造大大地提高了产品的质量和企业的生产经营效率。企业的数字化制造水平和应用能力已经成为企业的核心竞争力。

应用型本科院校机电专业的人才培养特色是“工程教育,职业取向”,培养的学生是既不同于普通高等教育的研究型人才,也不同于高职高专院校的技能操作型人才,而是具有够用的机械和电子专业理论知识,一定的人文、科技和艺术素质,较强创新精神的高等应用型机械工程领域的复合性应用型人才。从就业反馈来看,企业认为学生的理论泛泛而实践技能不足,理论与当代的企业技术脱轨,就业后工作适应能力差,需要经过相当长时间的培训和培养才能胜任岗位。因此,需要改革人才培养方案和课程,以数字化设计制造的综合工程能力为主线、基于企业实践培养人才。

一、以数字化设计制造为主线的培养方案规划

基于我校机械专业近几年的就业和定向培育就业客户群调研,我院总结形成了企业的岗位能力需求指标,并分解指标,形成知识体系,根据知识体系修改了培养方案。

沈阳工程学院为以工为主的培养技能应用型人才的地方高校,办学战略依托电力行业,服务先进装备制造行业和现代服务业,培养创新应用型人才。机械电子工程专业主要培养德、智、体、美全面发展,较系统地掌握机械制造及自动化、计算机应用、自动控制和电子技术应用等复合型的专业知识,以机床数控系统的应用与开发,机电一体化产品的设计、调试和管理等能力为特色的机械电子工程领域高级应用型人才。

课程群规划遵循“三面向、三服务”的理念,即面向学生就业、面向企业界、面向未来,课程改革要服务于职业能力需求、服务于工程实践能力培养,理论课程要服务于实践课程。

我院综合美国ABET 工程专业认证的标准和企业需求确定了机电专业工程素质能力的培养包含自然人文能力、工程应用能力、机械产品设计能力、机械产品制造能力、机械设备控制能力和企业实践能力等模块。课程群体系要体现“理实交融、分为层递进”的原则,分为基本技能层次、提高应用层次和综合创新层次三大类。

二、课程群建设方法

( 一) 以课程群为基础,结合教师科研,组建教学科研团队,争创精品课程。建立同典型企业的校企密切合作关系,按照典型企业的数字化生产流程规划工程软件,软件分必修和选修两部分,对于必修课程,学生必须掌握; 而选修课程,学生可课后自学。必修软件有AUTOCAD、UG、ANSYS 和Matlab,选修软件有机械工程师、Amesim、VERICUT、CAXA工艺图表、PC DMIS、VNUC、Autoform、GeomagicQualify 和Imageware 等。在工程软件课程体系中,AUTOCAD 主要培养学生的机械和电子平面制图能力,在机械制图与CAD 课程中学习,在机械原理、机械设计、机械测绘、机械原理课程设计和机械设计课程设计中应用; UG 主要培养三维设计和数控编程能力,在三维设计基础、CAD/CAE 技术与应用和数控加工工艺与编程中按模块讲授,在模具设计与制造、数控加工工艺与编程课程设计和机械装备课程设计中应用; Matlab 主要培养数学分析和控制系统分析能力,在高等数学、线性代数和机电工程控制基础中学习,在机电一体化系统课程设计、机械工程测试技术和液压与气压传动课程设计中应用;ANSYS 主要培养有限元分析能力,在工程力学和CAD/CAE 技术与应用中学习,在材料成形技术和CAD/CAE 实训中应用。

( 二) 贯彻工程软件培养,注重对必修软件的系统培训,安排好自学选修软件的知识点,规划好各课程中软件的知识点讲授和知识的递进,以使学生掌握数字化设计制造能力。比如: 对于数字化制造能力的培养,重点培养数控机床的`加工能力,在三维设计基础课程中讲授UG 软件的基本操作和三维实体造型; 在模具设计和制造课程中讲授模具的三维设计; 在机械制造装备设计课程中讲授夹具的设计; 在机械制造技术基础课程中讲授CAXA 工艺图表软件编制数控加工工艺规程; 在数控加工工艺与编程课程中讲授利用UG 软件编制数控程序; 在先进制造技术课程中讲授利用VERICUT 软件进行数控程序加工仿真,利用PC DMIS 软件生成数字化测量程序,利用Geomagic Qualify 软件进行检测结果分析,最后这些技能在独立实践环节数控加工工艺与编程课程设计中得到全面应用。学生利用前述这些工程软件,从产品的图纸出发,独立分析并设计数控加工工艺规程,编写数控加工程序,分组加工零件并检测。

( 三) 为体现数字化设计和制造能力培养,对课程群的能力体系进行分解,得到详细的能力和目标矩阵。设置40 周的独立实践环节,包括课程设计、实训、实习和毕业设计,侧重综合问题的解决,体现工程实践性和创新性,培养学生的企业实践技能,使其能够综合应用专业知识进行产品的数字化设计和制造,解决实际工程问题。突出实践教学的地位,实践教学不仅仅是理论教学的演示、验证和补充,还是工程能力培养的决定性环节,培养目标的实现应以能否从事生产实践作为评判基准。加大专业化、数字化设计制造素质教育,对于取得相关学科证书的学生将给予学分加分或课程减免的激励,包括数控车床和铣床的中级工和高级工操作等级证书、制图员证书、三维设计证书、数控工艺员证书、各种省级以上相关比赛证书等。此类课程也可以帮助学生考取职业资格等级证书,增加就业资本。

( 四) 加强数字化设计制造教学资源库建设,选择企业经典案例进行课件、图片、动画等教学资源的信息化建设; 加强虚拟实验室建设,建造虚拟材料成型实验室、虚拟数控加工仿真实验室和网络化制造实验室等。在进行数字化教学资源建设和虚拟实验室建设中吸收学生参与,既激发了其学习的兴趣,又锻炼了其数字化设计和制造能力。

( 五) 加大教材建设,特别是综合实践类教材,编写反映企业数字化设计制造技术的教材,对企业的典型零件和流程进行凝练,形成具有代表性的教学案例。教材应言简意赅,图例形象,还要便于进行启发性教学,便于课后思考和进一步的知识扩展。

( 六) 开放数字化设计制造相关实验室。将数控机床实验室、CAD/CAM 实验室开放,接受课外实验和创新制作,提高学生的学习能动性。利用好教务网络教学平台,将数字化设计和制造的教学资源放到网络上,开展网络答疑,增加与学生间的互动,利用当代大学生的信息获取手段促进其学习兴趣的提高。

相关推荐

热门文档