首页 > 工作范文 > 范文大全 >

实用高二上学期数学教学计划中职 高二上学期数学教学计划及进度表哈师大附中【5篇】

网友发表时间 2634755

【请您参阅】下面供您参考的“实用高二上学期数学教学计划中职 高二上学期数学教学计划及进度表哈师大附中【5篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

高二上学期数学教学计划中职 高二上学期数学教学计划及进度表哈师大附中【第一篇】

高二5班共有学生73人,8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。

1、加强自身学习。

①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。

②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。

③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。

④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。

⑤增强听课意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。

2、抓好课堂教学主战场,激发师生学习数学热情。

①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。

②精编精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。

③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。

3、做好课后辅导工作。

①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。

②利用自习课时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。

4、做好作业、考试反馈工作。

学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。

5规、范作答,养成良好习惯。

现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。

6、培养学生的数学兴趣,普及数学价值规律的应用。

兴趣是最好的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。

以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期达到教与学的最佳效果。

高二上学期数学教学计划中职 高二上学期数学教学计划及进度表哈师大附中【第二篇】

1.通过实例理解样本的数字特征,如平均数,方差,标准差.

2.能根据实际问题的需求合理地选取样本,从数据样本中提取基本的数字特征,并作出合理的解释.

重点难点

重点(1)用算术平均数作为近似值的理论根据.(2)方差和标准差刻画数据稳定程度的理论根据.

难点:(1)平均数对总体水平进行评价时的可靠性(和中位数和众数之间的联系).(2)通过实例使学生理解样本数据的方差,标准差的意义和作用.

算术平均数和加权平均数

(一)问题情境

某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度.全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:m/s2):

问题1:怎样用这些数据对重力加速度进行估计?

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数(median).

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数

一组数据中出现次数最多的那个数据叫做这组数的众数,

算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数.

问题2:用这些特征数据对总体进行估计的优缺点是什么?

21世纪教育网

用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系.对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响.

用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”.

用中位数作为一组数据的代表,可靠性也较差,但中位数也不受极端数据的影响,也可选择中位数来表示这组数据的“集中趋势”.

平均数、中位数、众数都是描述数据的“集中趋势”的“特征数”,它们各自特点如下:

任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具备的性质,也正是这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.

问题3:我们常用算术平均数 (其中ai(i=1,2,…,n)为n个实验数据)作为重力加速度的近似值,它的依据是什么呢?

处理实验数据的原则是使这个近似值与实验数据之间的离差尽可能地小,我们考虑(x-a1)2+(x-a2)2+…+(x-an)2,当x为何值时,此和最小.

(x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+ a12+a22+…+an2.

所以当x=a1+a2+…+ann时离差的平方和最小.

(二)数学理论

故可用x=a1+a2+…+ann作为表示这个物理量的理想近似值,称其为这n个数据a1+a2+…+an的平均数或均值一般记为:

-a=a1+a2+…+ann.

(三)数学应用

例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.

甲班:

112 86 106 84 100 105 98 102 94 107

87 112 94 94 99 90 120 98 95 119

108 100 96 115 111 104 95 108 111 105

104 107 119 107 93 102 98 112 112 99

92102 93 84 94 94 100 90 84 114

乙班

116 95 109 96 106 98 108 99 110 103

94 98 105 101 115 104 112 101 113 96

108 100 110 98 107 87 108 106 103 97

107 106 111 121 97 107 114 122 101 107

107 111 114 106 104 104 95 111 111 110

分析:我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可.

解:用科学计算器分别求得

甲班的平均分为,

乙班的平均分为,

故这次考试乙班成绩要好于甲班.

此处介绍excel的处理方法.

例2:已知某班级13岁的同学有4人,14岁的同学有15人,15岁的同学有25人,16岁的同学有6人, 求全班的平均年龄.

解:13×4+14×15+15×25+16×64+15+25+6

=13×450+14×1550+15×2550+16×650

这里的450,1550,2550,650,其实就是13,14,15,16的频率.

[数学理论]一般地若取值为x1,x2,…xn的频率分别是p?1,p2,…pn,则其平均数为x1p1+x2p2+…+xnpn.

睡眠时间 人 数 频 率

[6,) 5

[,7) 17

[7,) 33

[,8) 37

[8,) 6

[,9] 2

合计 100 1

例3.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.

分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间.由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示.

解法1:总睡眠时间约为

×5+×17+×33+×37+×6

+×2=739(h).

故平均睡眠时间约为

解法2:求组中值与对应频率之积的和

原式=×+×+×

+×+×+×=(h).

答 估计该校学生的日平均睡眠时间约为

21世纪教育网

例4.某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.

分析:上述比就是各组的频率.

解 估计该单位职工的平均年收入为

12500×10%+17500×15%+22500×20%+27500×25%+32500×15%

+37500×10%+45000×5%=26125(元).

答估计该单位人均年收入约为26125元.

例5.小明班数学平均分是78分,小明考了80分,老师却说他是倒数几名,你觉得这可能吗?(再看书p64思考)

高二上学期数学教学计划中职 高二上学期数学教学计划及进度表哈师大附中【第三篇】

在学校教学工作意见指导下,在学部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体目标如下。

1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

高二理科学生共有500人,学生学习数学的气氛不浓、基础很差。由于学生对学过的知识内容不及时复习,致使对高二的数学学习有很大的影响,高一数学成绩充分反映没有尖子生,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全班同学的学习热情,提高学生的数学成绩。

1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2。通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

1、认真落实,搞好集体备课。每2周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

2、详细计划,保证练习质量。教学中用配备资料《学海导航》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。

3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。实行以竞赛带培优,让有能力的同学更上一层楼。实行专人负责,定时间、定地点、定人数、定内容,的学校安排。我们高二段统一由戴文生老师负责,争取在明年的市数学竞赛中取得好的成绩。

5、段考制度创新。由于高二分科,我校实行分层教学,今年段考实行文理分别负责,重点班和次重点班、普通班的分别考试。对重点班要加深难度,拓展宽度,争取在高二使学生的数学能力有较大的提升。其他班级要夯实基础,实现会考新的突破,为高三学习打下基础。

高二上学期数学教学计划中职 高二上学期数学教学计划及进度表哈师大附中【第四篇】

“解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

“解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

③能根据斜率判定两条直线平行或垂直;

④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

⑤能用解方程组的方法求两直线的交点坐标;

⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

③能用直线和圆的方程解决一些简单的问题。

①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

①用倾斜角的正切

这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

这需要先引入0°到180°的正切函数的概念。

②用向量

高二上学期数学教学计划中职 高二上学期数学教学计划及进度表哈师大附中【第五篇】

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

(一)情意目标 :

(1)通过分析问题的方法的教学,培养学生的学习兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识 。

(二)能力要求 :

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。

(3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。

立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。

直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

相关推荐

热门文档

48 2634755