首页 > 工作范文 > 范文大全 >

2024年人教八年级数学教案 八年级数学教案人教版通用8篇

网友发表时间 3623331

通过多样化的教学活动,帮助学生掌握数学知识,培养逻辑思维和解决问题的能力,增强实际应用意识。以下是小编整理的优秀范文“人教八年级数学教案”,希望您喜欢。

人教八年级数学教案

人教八年级数学教案 篇1

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

人教八年级数学教案 篇2

一、教学目标

1.了解推理、证明的格式,理解判定定理的证法.

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.

二、学法引导

1.教师教法:启发式引导发现法.

2.学生学法:积极参与、主动发现、发展思维.

三、重点?难点及解决办法

(一)重点

判定定理的推导和例题的解答.

(二)难点

使用符号语言进行推理.

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点.

2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片.

六、师生互动活动设计

1.通过设计练习,复习基础,创造情境,引入新课.

2.通过教师指导,学生探索新知,练习巩固,完成新授.

3.通过学生自己总结完成小结.

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

学生活动:学生口答第1、2题.

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

教师将第3题图形画在黑板上.

学生活动:学生口答理由,同角的补角相等.

师:要求学生写出符号推理过程,并板书.

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角.

师:它们有什么关系.

学生活动:互补.

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.

人教八年级数学教案 篇3

1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。

3.公因式的确定:系数的公约数?相同因式的最低次幂。

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。

4.因式分解的公式:

(1)平方差公式:a2-b2=(a+b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式。

人教八年级数学教案 篇4

教材p144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

教材p145例5,由表中第二行可以查到号鞋的频数,因此这组数据的'众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

人教八年级数学教案 篇5

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

本学期我继续担任八年级三班四班的数学教学工作,两个班共有109人,从上学期期末考试成绩来看,两班数学基础一般,而且已经开始出现两极分化现象,一部分学生解题作答比较粗心,不能很好的发挥自己的水平,因此要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教学目标

知识技能目标:认识三角形,掌握三角形中各种线段及外角相关知识,进而对多边形的相关知识进行理解掌握;掌握全等三角形的性质与判定、轴对称及轴对称图形的特点;掌握整式的乘除运算、乘法公式和因式分解。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

过程方法目标:掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;初步建立数形结合的思维模式,学会观察、分析、归纳、总结几何图形的内在特点,学会使用数学语言表示数学关系。

态度情感目标:通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。

四、教材分析

第十一章三角形

本章主要学习与三角形有关的线段、角及多边形的内角和等内容。

本章重点:三角形有关线段、角及多边形的内角和的性质与应用。

本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。

第十二章全等三角形

本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。

教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。

教学难点:领会证明的分析思路、学会运用综合法证明的格式。

第十三章轴对称

本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。

教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。

教学难点:轴对称性质的应用。

第十四章整式的乘法和因式分解

本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。

教学重点:整式的乘除运算以及因式分解。

教学难点:对多项式进行因式分解及其思路。

第十五章分式

本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。

教学重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。

人教八年级数学教案 篇6

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

【学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

人教八年级数学教案 篇7

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

人教八年级数学教案 篇8

因式分解是第九章的难点。学生初学因式分解时往往要与乘法运算混淆。原因主要是概念不清。

在教学时,因式分解与乘法的区别是通过把等号两边的式子互相转换位置而直观得出。对于因式分解的方法,学生可通过自己的一系列练习实践去体会。故不需要在开头引入的地方多加铺垫,浪费了一定的时间。

在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。

在复习课上以上存在的一些问题还要重点突出讲解。帮助学生跟深刻的去认识因式分解。

相关推荐

热门文档

48 3623331