2024年高一数学说课稿优选大全最新8篇
【请您参阅】下面供您参考的“2024年高一数学说课稿优选大全最新8篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
高一数学说课稿优选【第一篇】
(一)创设情境,导入新课。
问题1:任意角的三角函数是如何定义的?
(从实际问题出发,引导学生思考,从任意角的三角函数定义考虑能否求出,,从而引入本节课的课题----两角差的余弦公式)。
问题2:我们在初中时就知道一些特殊角的三角函数值。那么大家验证一下,=吗?,下面我们就一起探究两角差的余弦公式。
(引导学生利用特殊角检验,产生认知冲突,从而激发学生探究两角差的余弦公式的兴趣。)。
(二)探索公式,建构新知。
(由于两角差的余弦公式推导方法有很多,本节课突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,书本上出现三角函数线法留给学生参照书本课下探究。公式得出后,生成点的动画,让学生进一步感知两角差的余弦公式对任意角均成立,并启发学生观察公式的特征。)。
方法一(两点间距离公式):如图,角的终边与单位圆交于;角的终边与单位圆交于;角的终边与单位圆交于;则:
所以:。
由于我们前面的推导均是在,且的条件下进行的,因此(1)式还不具备一般性。
若(1)式是否依然成立呢?
当时,设与的夹角为,则。
另一方面于是所以。
也有。
方法三(学生自主探究三角函数线法)。
(三)例题讲解,知识迁移。
例1化简求值:
(通过例1中有梯度的练习,学生能够实现对公式的正向和逆向的简单应用.求同时求出引例中桥的长度,培养学生应用数学的能力)。
(变式的教学中引导学生使用两种方法:
方法一:从公式本身思考。
方法二:引导学生发现。
提高学生应用知识的能力和逻辑思维能力)。
(四)开放小结,归纳提升。
小结:本节课你学到了那些知识,有什么样的心得体会?
口诀:余余正正异相连。
(引导学生从公式内容和推导方法两个方面进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。开放式小结,启发灵活,以问促思,能够较全面的帮助学生归纳知识,形成技能。)。
(五)分层作业,巩固提高(必做题)p127,练习1,3,4。
(选做题同学可以思考:能否用直角三角形中的三角函数关系证明两角差的余弦公式?课后作业设置有必做题和选做题,使不同程度的学生都得到能力的提升,符合因材施教的教学规律)。
八、板书设计。
九、教后反思。
高一数学说课稿优选【第二篇】
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排。
节教材安排为4课时,我计划用5课时。
(三)目标和重、难点。
1.教学目标。
教学目标的确定,考虑了以下几点:
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2.重、难点。
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;。
二、教法分析。
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
三、学法和能力培养。
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。因此。
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
指导思想是:两条线索、三大特点、四个环节。
(一)导入。
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分。
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质。
1.定义域、值域2.周期性。
3.单调性(重难点内容)。
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;。
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
高一数学说课稿优选【第三篇】
使用教材:必修1(人教版)。
说课教师:刘华。
各位老师同学们,大家好!今天我说课的课题是“集合的概念”,本节内容选自高中数学必修1(人教版),下面我将主要从六个方面介绍我的教学方案。
一、教材分析:
教材的地位和作用:
集合是学习高中数学的重要工具之一,起着承前启后的作用。本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法等,还给出了画图表示集合的例子.从教材我归纳出本节内容的教学重点和难点。
(一)教学重点:集合的基本概念和表示方法,集合元素的特征。
二、教学目标:
(一)知识目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法;
(2)使学生初步了解“属于”关系的意义;
(3)使学生初步了解有限集、无限集、空集的意义。
(二)能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(3)通过教师指导,发现知识结论,培养学生抽象概括能力和逻辑思维能力;
(三)德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情。
操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
三、学情分析:
针对现在的学生知识迁移能力差、计算能力差的特点,第一节课的内容不要求学生太多的计算,通过大量的举例让学生充分掌握集合的基础知识。
四、教法分析:
为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比的过程,使学生获得发现的成就感。在这个过程中力求把握好以下几点:。
(1)通过实例,让学生去发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。
(2)营造民主的教学氛围,使学生参与教学全过程。
(3)力求反馈的全面性、及时性,通过精心设计的提问,让学生的思维动起来,针对学生回答的问题,老师进行适当的点评。
(4)给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察,分析,类比得出结果,提高学生的推理能力。
(一)复习导入。
(1)简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
(2)教材中的章头引言;
(3)教材中例子(p4)。
(二)讲解新课。
(1)集合的有关概念。
(2)常用集合及表示方法。
(3)元素对于集合的隶属关系。
(4)集合中元素的特性。
(三)课堂练习。
1下列各组对象能确定一个集合吗?
(1)所有很大的实数的集合(不确定)。
(2)好心的人的集合(不确定)。
(3){1,2,2,3,4,5}(有重复)。
(4)所有直角三角形的集合(是的)。
(5)高一(12)班全体同学的集合(是的)。
(6)参加奥运会的中国代表团成员的集合(是的)。
2、教材p5练习1、2。
六:总结。
1.本节主要学习了集合的基本概念、表示符号;一些常用数集及其记法;集合的元素与集合之间的关系;以及集合元素具有的特征.
2.我们在进一步复习巩固集合有关概念的基础上,又学习了集合的表示方法和有限集、无限集、空集的概念,同学们要熟练掌握.
高一数学说课稿优选【第四篇】
两角差的余弦公式是推导其它十个公式的基础,所以我想着重讲这一小节,本节课的重点和难点是两角差的余弦公式的推导,所以在备课阶段,我研究了教材和教师用书,并且还在网上下载了许多这节课的教学设计。同时我根据我们班学生对知识理解的快慢,把两角差余弦公式的几何证明方法舍去了,想只讲它的向量的方法,有两方面的考虑,第一是刚结束平面向量的学习,对数量积还有印象,第二是从另一个方面让学生去体会向量作为一种工具的应用,从而使学生能对数学有那么一点点兴趣。
在我准备好之后,我又问了其他的数学老师,她们也同意只讲向量的证明方法,另一个方法对学生连提都不提,另外我还问了一下如何引入这一节的内容,并提了我的引入方法——将教材上的例题进行适当的改编,降低了难度,但是老师告诉我就直接点明主题就行了,加入引入的话会把学生绕晕的。我自己也想了想上次课讲数量积的时候对文科生用功的例子引入,结果可以想象,开头学生就觉得好难,等到讲数量积定义的时候学生完全听不进去了,那节课算是失败的。这一次我想了想采取了保守的策略——直接进入主题。
刚开始的时候效果还是不错的,通过让学生猜测15度《两角差的余弦公式》的`教学反思——潘红亚的余弦值引起了学生的兴趣,很自然的进入了公式的推导,但是我没有想到会在写角的终边与单位圆交点坐标时遇到了困难,学生一点想不起来三角函数是如何定义的,再加上当时快下课了,我没有进一步引导,而只是按照我自己的进度讲完推导过程,最后学生迷茫的表情让我很有挫败感,我就带着学生一块记忆公式,并告诉他们只要会用公式做题就可以了,听不懂就算了。
这节课过后,我自己静下心来想了想,我犯了数学课的大忌,一味地讲公式,套解法是最快得分的捷径,但它也是扼杀思考的最有效的管道。数学的根基在于理解而非公式或解法。通过最近的讲课,我发现张硕老师对我们讲的有关数学教学的理论我都没用上,所以我想等到讲必修五的时候,我需要的是花大量的时间备课,适当应用一些新的教学理论,改变一下数学课堂,实习就是将自己学到的理论应用于实践。
高一数学说课稿优选【第五篇】
引例:
例2:
例3:
4:
小结:
教学评价分析。
诊断性评价:
1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。
2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。
3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。
预期效果:。
1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。
2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。
3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.
高一数学说课稿优选【第六篇】
各位评委、老师:
大家好,我说课的内容是人教a版《普通高中课程标准实验教科书a版数学必修一》第二章《对数函数及其性质》。
我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。
本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。
《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:
知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。
过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。
情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.
结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:
重点:对数函数的概念、图象和性质;
难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;
对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。
教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的`图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。
老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。
教学过程分为以下环节:
(一)实例引入、直观感知。
1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.
问题一:这是一个怎样的函数模型类型呢?设计意图:复习指数函数。
设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.
2、在2.2.1的例6中,考古学家利用估算出土文物或古遗址的年代,对于每一个c14含量p,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式中的,任取一个正的实数值,均有唯一的值与之对应,所以的函数。
问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)。
问题四:你能类比指数函数得到此类函数的一般式吗?
设计意图:体现了类比和特殊到一般的数学思想。
(二)总结类比、形成概念。
问题五:你能根据指数函数的定义给出对数函数的定义吗?
(师生共同归纳出对数函数的定义)。
问题六:与中的x,y的相同之处是什么?不同之处是什么?
设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域。
(三)类比探究、分析归纳。
问题:有了研究指数函数的经历,你会如何研究对数函数的性质?
设计意图:提示学生进行类比学习。
合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。
合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出与验证。
设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。
教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。
合作探究3:对照指数函数的性质,总结归纳对数函数的性质.
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。
(四)知识应用、提升能力。
例1:求下列函数的定义域。
(1)()(2)()。
(该题主要考查对数函数的定义域,可在此总结函数定义域的限制)。
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1),(2),
(3),(4),,
思考巩固:已知,比较m,n的大小。
(五)师生交流、归纳小结。
由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。
(六)布置作业。
教材p73练习1,2。
设计意图:练习难度不大,是对本节知识的巩固。
高一数学说课稿优选【第七篇】
本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。
所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。
“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。
学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。
根据教材内容和学生的实际情况,本节课的教学目标设定如下:
通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。
通过探究、展示、交流,养成良好的学习品质,增强合作意识。
通过具体问题体会逼近过程,感受精确与近似的相对统一。
“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。
本节课采用的是问题驱动、启发探究的教学方法。
通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。
本节课特点主要有以下几方面:
1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。
2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。
以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。
3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。
本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。
4、恰当地利用现代信息技术,帮助学生揭示数学本质。
程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。
以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。
另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。
高一数学说课稿优选【第八篇】
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点、难点。
重点:集合的含义与表示方法。
难点:表示法的恰当选择。
教学目标。
1、知识与技能。
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性。互异性。无序性;
(4)会用集合语言表示有关数学对象;
2、过程与方法。
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3、情感、态度与价值观。
使学生感受到学习集合的必要性,增强学习的积极性。
1、教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。
2、教学手段:在教学中使用投影仪来辅助教学。
各位领导和教师,大家好!我说课的资料是苏教版必修1第1章第3节第一课时《交集、并集》,下头我想谈谈我对这节课的教学构想:
一、教材分析:
与传统的教材处理不一样,本章在学生经过观察具体集合得到集合的补集的概念后,上升到数学内部,将“补”理解为集合间的一种“运算”、在此基础上,经过实例,使学生感受和掌握集合之间的另外两种运算—交和并。设计的思路从具体到理论,再回到具体,螺旋上升。集合作为一种数学语言,在后续的学习中是一种重要的工具。所以,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学资料。有了集合的语言,能够更清晰的表达我们的思想。所以,集合是整个数学的基础,在以后的学习中有着极为广泛的应用。
基于以上的分析制定以下的教学目标。
二、教学目标:
1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。能用venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。
2、经过对交集、并集概念的学习,培养学生观察、比较、分析、概括的本事,使学生认识由具体到抽象的思维过程。
3、经过对集合符号语言的学习,培养学生符号表达本事,培养严谨的学习作风,养成良好的学习习惯。
三、教学重点、难点:
针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。而把如何引导学生经过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。
四、教法、学法:
针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习进取性的原则,采用“五环节教学法”、同时利用多媒体辅助教学。