首页 > 工作范文 > 范文大全 >

三角形面积计算方法汇总8篇

网友发表时间 3005685

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“三角形面积计算方法汇总8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

三角形面积计算方法【第一篇】

教学目标:1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

2.培养学生观察能力、动手操作能力和类推迁移的能力。

3.培养学生勤于思考,积极探索的学习精神。

教学过程:

一、复习铺垫。

(一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?

教师:今天我们一起研究“三角形的面积”(板书课题)。

二、指导探索。

1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)。

2.演示课件:拼摆图形。

3.评价一下以上用“数方格”方法求出三角形面积。

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。

3.用两个完全一样的直角三角形拼。

(1)教师参与学生拼摆,个别加以指导。

(2)演示课件:拼摆图形。

(3)讨论。

4.用两个完全一样的锐角三角形拼。

(1)组织学生利用手里的学具试拼。(指名演示)。

(2)演示课件:拼摆图形(突出旋转、平移)。

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

5.用两个完全一样的钝角三角形来拼。

(1)由学生独立完成。

(2)演示课件:拼摆图形。

6.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(4)如果用s表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?(三)教学例1.

1.由学生独立解答。

2.订正答案(教师板书)。

×4÷2=(平方厘米)。

三、质疑调节。

(一)总结这一节课的收获,并提出自己的问题。

(二)教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(2)求三角形面积为什么要除以2?

三角形面积计算方法【第二篇】

在本节课教学中,我引导学生发现问题、解决问题。在解决问题的过程中,我充分放手,让学生自己探索计算方法,学生通过独立思考,小组交流讨论,经历与他人交流的过程,培养学生思维的独立性和灵活性。同时,我让学生用自己的语言进行表述,而不是强求统一的`语言进行操练,使学生在一种自由、民主、和谐的氛围中学习。在教流过程中让学生感受到集体的智慧是无穷的,懂得欣赏别人,能够取长补短。

三角形面积计算方法【第三篇】

关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。

第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。

前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。

教材中还有一点缺失:学生在教师的引导下用两个“全等”三角形进行拼接时,是一个尝试的过程。教材举例说:小华拼出了一个长方形一个平行四边形。小林拼出了两个三角形――一个人拼的全是能利用的,一个人拼的全是不能用的,两个人的对比太大。我们想这不是教材的疏漏,是为了突出教学任务和目标。另外,教材举的例子是两个三角形能拼成一个长方形和一个平行四边形。但实际上能拼成两个平行四边形,加上长方形就是有三个图形是已经学习过的,都能用来推算三角形面积。教材忽略这个没有列出的平行四边形,我们猜可能是因为它的倾斜度过大,在视觉上有一种要“倒”的感觉。如果学生受视觉效果的影响,注意力分散,会影响到他们分析两种图形的底、高和面积的关系。也可能是基于简单化原则,有两个就够了,何必要三个。但是按这个说法,要一个就够了,何必两个。

按照教材设定的思路,我们可以设想:学生手拿三角形,听老师布置完任务。怎么拼,能拼出什么都不太清楚,只能先随便的拼一下试试。如果运气好或者预想能力较强,可能直接拼出平行四边形和长方形。学生在试验时,会发现不等边拼接没有后续效果,因为这些组合图形都不规则,不能把握。然后,学生会把注意力放在那些特殊图形上。一类是那些中心对称的平行四边形,这是学习过的内容;一类是那些左右对称的凸多边形,这是好奇心驱使,随后即会放弃。学生的试验,开始可能是无序状态,随着注意的集中,目标一个一个的出现,学生的意识中必定会对自己刚才的所有拼接进行回顾(很多时候这个回顾是无意识的),找到拼出所有图形的方法得出两个全等三角形能顺次拼出三个形状不同的平行四边形的结论,使自己的思维进入有序状态。

教材把这个过程缩减了,有些教师则更希望把它压缩成一个或几个动作,为后面的讲解和练习挤出时间,不愿把时间精力浪费在这个非目标、非重点、也非难点的中间环节上。认为只要知道了转换的道理,就有了“等底等高,面积2倍”这个重点的突破。在动手操作上延长时间,势必影响教学目标的讲解和强调。

其实这是个误解。公式的推导过程本身也是对公式的熟悉过程,过程熟悉了,结果也就熟悉了。以后也就无须用多的吓人的练习题让学生做,把公式强印到学生的脑子中。举一个化学上的例子:两种物质能发生反应,这是先决条件。但是反应所需要的环境如加热、电击、搅拌或是放在溶液中使其反应更充分,以及催化剂等这些控制反应进行的因素也很重要,甚至是必须的。学生在探寻知识的过程中所取得的经验和教训就是知识发挥作用的控制因素。一般上,我们认为把知识放在问题中,解决问题,知识的作用就发挥出来了。但是,问题从何而来?来自思维。思考什么?思考我们看到的,感觉到的。如果对周围事物的发展、变化、规律、联系、相互作用、矛盾冲突以及相似性、特殊点(这些名词、概念确实存在于我们的意识和思维中)没有任何的反应,就不会产生问题、提出问题。不会发现问题的人,一般也不会主动回答别人的问题。让学生自己动手就是为了训练学生的`动手能力观察能力和感受性。

如果学生在图形的拼接过程中能集中注意力,边拼接边总结,最后达到能快速有节奏的拼出所有图形的程度。那么学生至少有两点除直接为教学目标服务之外的收获。其一是实验精神,这种品质是在面临所有新问题时都必须具备的。这一点不必多说。

第二点是个技巧:要想拼出所有图形,必须以排列组合的方式按照一定的顺序,挨着个的来。如果我们能对这个技巧善加培养,就会形成一种能力或是一种精神品质。在许多新编的实验教材中都安排了很多这样类型的训练内容。这些训练的目的,并不在这些具体的问题本身,而在于让学生扩展自己的思维空间。思维空间的扩展并不是说让学生知道更多的东西,而是说让学生忘记自己已知道的、已掌握的东西――需要的时候,能马上从意识中提取。想达到这种水平,需要做到体系化和结构化。人的思想无限广大,但是如果其中的内容杂乱无章,互无联系,就等于有限的物质占据了无限的空间。就象是如果没有天体星系之间的吸引力和运动造成的动态平衡,就会宇宙大乱。人类就不可能认识这个世界。会毁在这种无序状态之中。但运动能看的见,吸引力却难捉摸。

在我们所有的认识活动中,都有一个从混沌到有序,从不明所以的细节认识到把握事物的结构,确定各部分间的联系和作用方式的整体感知的过程。如果学生拥有了这个过程的心理体验,就会促使他们在个性发展上形成一种良好的精神品质。就会心理坚定,动作迅速,思维敏捷。但我们却常常在课堂上打断学生的这个思维过程,系之以我们认为最佳的知识体系。却不知单纯以逻辑作联结的知识在学生看来只是内容上的堆砌,会对学生造成巨大的精神压力。只有以心理体验做基础才能真正将知识内化,达到“有”既是“无”的空明之境。自己的努力常被别人打断的人,有一种受制于人的感觉。经常这样,学生会变的没有自信,心浮气燥,尝试过程中会产生否定心理:否定错误,固执己见;否定问题:这个问题不可能有解;甚至否定自己:我做不出来了,再努力也是白费工夫。

推导三角形的面积公式,大致有五种方式。根据各种推导方式的不同特点,我们可以帮助学生设定两种学习思路。

第一种:前三种推导方式,适合用“先确定探求目标,然后从已知经验中借鉴和搜寻解决方法”的学习方式:学生手拿一个具体的三角形卡片,经过怎么办,怎么变,怎么算等思维过程,然后通过验证,将怎么变舍去,把怎么算压缩概括为一个计算程序,这就是公式。第二种:用后两种推导方式,可以这样引导学生“长方形和平行四边形的面积公式除了能计算平行四边形和长方形的面积,还可以计算其他图形的面积。大家可以尝试一下……”。学生手拿长方形和平行四边形,经过折叠、剪切逐步转化为三角形和梯形,再总结成公式。这两种引导方式是不应该混杂在一起呈现给学生的。

无论是那一种方法,只要真正是学生的动手操作和思维的成果――教师的责任和义务是导引而非强行推进――对学生来说都有非常重大的意义。除知识的累积外,尚有许多教师可以讲清却无法给予的心理体验和能力。比如:

前面提到的试验精神和以排列组合的方式对事件的发展进行调控,增强思维的有序性。

建立数学模型,把实践问题数学化。这是许多人不了解数学为何物的关键之处。

估算和预想。学生拿着三角形和剪刀,不会直接下手,会先进行比对和预想:从这里下刀,向这个角度截下的角能补到哪?能把顶角补齐吗?估计相差不大,试一下……有许多解决问题和创造活动的前期准备都是在头脑中预演的。预演的过程虽不十分准确,但节奏快,内容多,可以跳过许多不必要的中间程序。

动手能力。这是大家都非常重视的一个词。证据之一:小孩子在玩沙时,大人有耐心看着他们完成自己的作品,直至失去兴趣。在课堂上我们为学生准备了许多学具。这些学具,是根据我们想要学生完成的操作动作精心设计的。能最大限度的体现老师的要求。学生在用学具对老师进行模仿,或参照课本完成老师的细致要求时。时常被我们的“好了!大家停一下。坐好了!”或“现在我们来看……”一类的声音打断。学生们一听到这些话,就会习惯性的把手拿开放到背后。许多老师要求学生坐直,抬头挺胸,手放背后。而且时不时来一句“看谁坐的直!”。学生坐好以后,对自己的劳动成果不再看一眼,眼睛直盯着黑板和老师。就好象桌子上什么东西都没有,刚才自己什么也没做过一样。毕竟,动手能力没有注意听讲重要。

证据之二:有时候我们会很自豪的说:如果学生不会,我就手把手地教。实际上,手把手的作用并不大:老师拿着学生的手,学生的注意和力量被分散了。老师的力量加在学生手上,学生会自然的产生反作用力。但他明白他应该顺应老师所以他要控制自己的反作用力。学生的一部分精力就用在了二者的协调上。学生不可能在手把手的过程中真正体会到老师是如何用力的。感觉只能是自己产生,别人能给的只是外部刺激。手把手的好处可能是能对那些自信心不足的学生以安慰和鼓舞,以及提醒学生模仿参照老师,想象体会老师的感觉。

试验过程中规律和直感经验的应用和把握。在截切三角形时第一次会用较多的时间,失败的可能性很大。第二次找截切点和角度的速度会加快。也可能,第二次还没有进行完,学生就得出结论:这一次是失败的,准确位置应该在那儿。速度加快和直接下刀,表明学生已经感知这个截切点的特殊性,应该就在三角形的半腰处。右边是这样,左边也应该……。

前三种用割补法变三角形为平行四边形,利用的是以前的经验,模仿的形式。想到后两种填充法和拼接法,应该算是通过观察问题存在的周边环境而找到的方法,创造的成份比较多。这是把事件或问题放在背景和环境中考虑,是一种整体认知的意识和能力。既如荀子在《劝学》中说的“善假于物也”,此“物”既存于人的经验意识和周边环境中。

如果发挥学生的主体意识,学生找到后两种推导方法的心理机制比较复杂,我们还难以把握。学生可能是误打误撞找到的,也可能是因为学生有生活方面的此类经验,迁移能力较强。不管学生是怎样找到的,也不论是学生的功劳还是教师的指导,这几种方法所携带的辨证观念是我们应该特别关注的。即便是因为学生的年龄特点不能给予形式内容上的加强,起码可以给学生以精神自由和意志自由,做到不防碍它的发展。

精神意志的自由虽不能直接激发思维和创造,却可以产生真正的积极性和主动性。学生不把自己当学生,当成探索生活和世界的强者,教师不把自己当教师,当作合作者(尤其是备课的时候),由此思想自由而产生的创造,要比我们用装腔作势、花样翻新来吸引学生注意力,以集体、荣誉、表扬、攀比、别人的眼光来束缚学生的思想,以教鞭、纪律来规范学生的言行,高潮迭起、节奏紧凑、有声有色,学生却象是提线木偶的课堂来得彻底、来得有效率。

阿基米德说:给我一个支点,我能把地球翘起来。找到支点和作用方式学生的力量是巨大的。学习知识、掌握技巧、提高能力的作用点不在于紧盯目标和任务,下死工夫塞到头脑里。就好象翘起地球的支点不会在地球上,必须到太空中寻找一样,提高学习效率的支点应该存在于学生们比太空还充实还广漠的精神世界里。它的充实之处在于,学生能随时找到前进道路上的踏脚基石。广漠之处在于,学生愿意并能吸收容纳更多更新的体验。学生课堂学习的基础是他们的精神世界,他们的精神世界植根于生活。所以说提高学习效率的根本方法从丰富多彩的生活中凝练思想。

三角形面积计算方法【第四篇】

在学这课之前,学生已有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。学习方法方面的基础有:在学习习近平行四边形面积计算的时候,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。

教学目标:

1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。

2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

教学重点:

三角形面积计算方法【第五篇】

陈丽华(十一月)。

我教《三角形的面积》这节课时,由于学生有了探究平行四边形面积的方法,课堂上我放手让学生利用手中的学具小组内探究三角形的面积计算公式。学生积极思考积极探究,想到了把两个完全一样的三角形,拼成一个平行四边形,三角形的.高与底分别与拼成的平行四边形的高与底相等。拼成的平行四边形的面积是三角形面积的2倍,再根据平行四边形的面积公式,推导出三角形的面积公式。还有的把三角形直接转化成平行四边形,进行推导三角形面积公式。同组学生之间进行交流,进一步理解推导过程。最后通过练习巩固所学。整堂课把学生当成了学习的主人,留给学生足够的时间与空间进行探索交流。学生在探究交流中,我积极参与其中,对有困难的小组进行个别指导,体现小班化教学的优势。

教学中存在着很在多不足:

1、时间分配不够合理,留给学生探究的时间过多,导致后面练习总结的不够,使学生巩固的不够。

2、学生在与同位交流时,还算积极,但是在汇报交流时,大部分学生不愿意分享自己的看法,导致老师说得多,学生领会的不够。

今后还要在调动学生主动探究、积极发言的积极性上下功夫。

三角形面积计算方法【第六篇】

九年义务教育六年制小学数学教科书第九册69页至71页。

2.使学生明白事物之间是相互联系,可以转化和变换的。

3.通过交流,观察、比较,培养学生发现问题、提出问题、分析问题、解决问题的能力,发展学生的空间观念。

探究三角形面积公式的推导过程,掌握和运用三角形面积计算公式进行计算。

针对本课的知识特点,课前设计目的性明确、可操作性强的前置性作业,充分调动学生学习的热情,提高课前预习的效果,为成功的课堂教学做好铺垫;在课堂上,运用小组交流的学习方式,每个成员都有机会展示自己,小组交流后再进行全班的汇报,根据学生汇报的情况教师有目的地板书,然后引导学生观察、比较,进而推导出三角形的面积计算公式。

一、导入:

1、平行四边形面积计算公式是怎样推导的?

总结:把没学的图形转化成已经学过的图形从而推导出面积计算公式。

2、今天,我们也用同样的方法推导三角形面积计算公式,板书课题。

二、讨论。

小组交流课前小研究。

三、推导。

1、汇报课前研究的方法,老师根据学生的汇报有目的地板书。

四、应用。

1、教学例1。

2、强调格式。

五、练习。

1、下面平行四边形的面积是12平方厘米,斜线部分三角形的面积是多少?

(口答,并说出理由)。

2、判断:

(1)三角形的面积是平行四边形面积的一半。()。

(2)三角形的高是2分米,底是5分米,面积是10分米。()。

课前小研究。

研究者:班级:

(可以在学具盒或在附图中选材料)。

1、我用的材料是:

我的做法(文字或画图表示):

我的结论:

2、我用的材料是:

我的做法(文字或画图表示):

我的结论:

3、我用的材料是:

我的做法(文字或画图表示):

我的结论:

4、我用的材料是:

我的做法(文字或画图表示):

我的结论:

附图2。

材料一。

材料二。

三角形面积计算方法【第七篇】

成功之处:。

在本节课教学中,我引导学生发现问题、解决问题。在解决问题的过程中,我充分放手,让学生自己探索计算方法,学生通过独立思考,小组交流讨论,经历与他人交流的过程,培养学生思维的独立性和灵活性。同时,我让学生用自己的语言进行表述,而不是强求统一的语言进行操练,使学生在一种自由、民主、和谐的氛围中学习。在教流过程中让学生感受到集体的智慧是无穷的',懂得欣赏别人,能够取长补短。

不足之处:。

我发现学生动手的能力十分有限,有的学生干脆就是坐着,无从下手,有的学生只是模仿其他好的学生一起动手。用两个完全一样的三角形拼成一个平行四边形和用三角形的中位线剪拼后成为一个平行四边形。从表面上看,学生动手是在操作,可实际上学生只是机械地拼一拼,没有感受到这样的操作是为什么,学后只做了一次“机械的操作工”而为什么要这样去动手,学生却不得而知。看来,在今后的教学中,在学生小组合作,动手操作时,教师必要的引导是不可少的.

三角形面积计算方法【第八篇】

《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。因此我认为教学重点应该是引导学生学会学习(比如渗透转化的思想和方法)。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。

为了达到这个目标,我设计了三个学生的学习活动。

在教学中,我让学生动手操作,但是并没有直接让孩子用两个完全一样的三角形去拼,而是给了它们一个装有不同的三角形的学具袋,让其选择材料尝试转化,目的是看学生能否想到不同的转化方法,去体验和感知三角形面积公式的推导过程,调动学生思维活动,让学生真正成为学习的主体。同时在操作中向学生渗透旋转、平移的方法。

转化成学过的会求面积的图形,这只是学习的第一步,发现转化后的图形与原三角形的关系,才能使三角形面积公式的出现水到渠成自然而然。所以,在这个环节,我给了他们充足的独立思考时间和小组交流的时间。

如果学生能在第二个学习活动中把功课做足的话,自己总结写出三角形面积公式是不成问题的,但是不是有没有理解透的,所以我又追问三个问题:“为什么除以2”“除以2之前算的是什么?”“对于这个公式还有疑问吗?”包括让孩子回头想并口述整个推导过程,都是为了让学生加深理解。

反思整个环节,我感觉虽然学生动手操作了,但多多少少还是有点牵着学生鼻子走的意思,没有更多的猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。缺失了学生主动寻找材料的过程,影响了学生解决问题策略意识的培养和对知识的建构。

基于以上思考,我想再教学这一内容时,能不能引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。

相关推荐

热门文档

48 3005685