首页 > 工作范文 > 范文大全 >

医学影像论文范例优质10篇

网友发表时间 3321599

【请您参阅】下面供您参考的“医学影像论文范例优质10篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

医学影像论文【第一篇】

随着医学影像技术技术与设备的发展,它在医学领域中的地位日趋重要,医学影像技术的发展,在某种意义上代表着医学发展潮流中的一个热点趋势,推动了医学的发展,尤其是介入放射学的出现,使放射从单纯的诊断演变为既有诊断又有治疗的双重职能,并在整个医学领域中占有举足轻重的地位,成为与内外妇儿并列的临床学科。展望21世纪,医学影像学必将得到更快、更好及更全面的发展,必将会对人类的健康做出更大的贡献。本文通过对近些年所取得的成就讨论医学技术与设备的发展。

计算机x线摄影。

x射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,x射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极x射线管及断层摄影等。但是,由于这种常规x射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代时候开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。

到整个80年代,除了x射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中x射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,x射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。

的发展。

ct的问世被公认为伦琴发现x射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。其主要特点是横切面、断层成像、数字影像,使x线的重叠影像成为层面图像,并可用ct值测量人体组织密度。多年来,ct成像技术的发展一直围绕解决扫描速度、清晰度及扫描范围的和谐发展,最终多层(排)螺旋ct机的出现使三者得到了完美的体现。

其优点是:

(1)扫描速度提高了2~6倍,检查效率提高了10%。

(2)清晰度大大提高。

(3)比单层螺旋ct扫描信息量提高了2~4倍,尤其利于观察微小病灶。

(4)节省了x线管的损耗,增强扫描可节省造影剂用量,和单层螺旋扫描比x线剂量减少。正是由于使用了多层面采集和成像技术,有效地解决了扫描速度薄层和大范围的矛盾。今天,多层螺旋ct机已发展到64层(排),更有利三维立体影像成像、虚拟影像成像和ct血管成像,并且更多地被用于临床疾病的筛选,也会进一步发现微小的病灶,特别是临床症状不明显而被忽略的病灶,进而有利于治疗效果的提高。

另外,超高速ct(vfct)将用于临床,它用电子束代替x线,以极快的速度完成扫描,尤其适用于动态器官的扫描,使肺门部、心脏及大血管的影像质量进一步提高。未来的ct将是容积ct,随着探测器数量和材料的改进、计算机技术的提高、检出器的复数化排列,容积数据采集将会有更大的进步;数据量大,分辨率高,虚拟现实技术,这些新技术相加并用于临床,将会为ct的临床应用开辟更广阔的领域。

磁共振的发展。

mri自20世纪80年代用于临床,第一次使人体解剖三维成像,现有的低场、1t,中场将被高场3tmri所取代。然而mr的发展,就扫描速度、清晰度及临床应用而言,主要的发展是在电子学梯度场、射频场等方面,特别是脉冲序列和实时成像技术的发展。mr的进步集中反应在设备硬件发展基础上成像速度的提高及成像方式的改进和扩展,成像速度从以前的每层以分计算到目前的每层以秒计算,从而实现实时成像显示层面影像,甚至3d、4d等后处理影像及mr透视。正是有了实时成像技术和其开发的回波平面序列,除提高已有的性能外,mr功能性成像进一步得到了发展。灌注成像、弥散成像、血氧水平依赖性成像成为新的成像方式,前二者反应的已不是大体形态学信息,而是分子水平的动态信息,后者可以实施大脑皮质的功能定性,张力成像可测定组织的张力差别。

随着新型磁共振机的开发,揭开了磁共振应用领域新的一页,即运动mr和介入mr的应用和研究。mr血管成像、mr水成像、mr血流成像、脏器功能的检测、mr波谱分析、动脉血质子标记技术、抗血管生成因子辅助mr功能成像等技术的应用,使磁共振成像进一步突破了影像学仅应用于显示大体解剖和大体病理学改变的技术范围,向显示细胞学的、分子水平的以至基因水平的成像方面发展,未来虚拟现实技术将用于mr成像,为mri提供便捷、简易和无创伤的影像诊断。

图像存储和传输系统(pacs)。

综上所述,pacs技术可分为三个阶段:

(1)用户查找数据库;

(2)数据查找设备;

(3)图像信息与文本信息主动寻找用户。

医学影像技术的发展将会更加快速,影像技术的应用更加成熟,影像图像的质量更加清晰,影像学的优势集中为一体,它的发展必将给无数患者带来新的希望,必将对疾病的预访、早期诊断、确诊治疗做出新的贡献。随着医学影像器械不断更新,对影像技术人员的要为也不断提高,计算机和英语的水平也突显出来。

医学影像论文【第二篇】

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统x线、ct、mri、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的。发展,以胶片为主要方式的显示、存储、传递x-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

计算机x线摄影。

x射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,x射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极x射线管及断层摄影等。但是,由于这种常规x射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了x射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中x射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,x射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用x射线机不断出现,x光电视设备正在逐步代替常规的x射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的x线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种:(1)存储荧光体增感屏[计算机x射线摄影系统(computer]。

(2)硒鼓探测器。(3)以电荷耦合技术(chargecoupled为基础的探测器。(4)平板探测器(flatpaneldetector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

ct的问世被公认为伦琴发现x射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(fat),另一种模式是“光子迁移成像”(pmi)。

磁共振成像。

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

数字减影血管造影。

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

数字x射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或cmos器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接fpt结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接fpt结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加tft阵列构成的平板检测器。电荷耦合器或cmos器件以及线扫描等技术结构上包括可见光转换屏,光学系统和ccd或cmos。

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层ct的问世,每次ct检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就x线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。pacs系统应运而生。pacs系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。pacs系统的产生标志着网络影像学和无胶片时代的到来。完整的pacs系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个pacs系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,pacs技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括mri、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

官功能的判断。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(mrs),正电子发射成像(pet)单光子发射成像(spect),阻抗成像(eit)和光学成像(oct或nri)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、乳房及其他部位的成像提供新的信息。

磁源成像。

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

和spect。

单光子发射成像(spect)和正电子成像(pet)是核医学的两种ct技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ect)。ect依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ect存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ect的应用。

阻抗成像(eit)。

eit是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用eit的实验样机。

光学成像(otc或nir)。

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

mrs是一种无创研究人体组织生理化的极有用的工具。它所得到的生化信息可与人体组织代谢相关联,并表明它正常组织的方式有差别。目前mrs还没有常规用于临床,但已有大量技术正在进行正式适用。

上述的几个先进的技术,究竟哪一个能成为医学影像技术的热点,我们认为应要有最大效益、安全和经济是最为重要的。在逝去的20世纪,医学影像技术经历了从孕育、成长到发展的过程,回顾过去可以断言它在防治人类疾病及延长平均寿命方面是功不可没的。在一切“以人类为本”的21世纪中,人们将继续用医学影像技术来为人们的健康服务。

医学影像论文【第三篇】

乌鲁木齐军医学院在六年多的医学影像专业教学改革实践中,通过强化实践性教学目标,优化教学课程配置,重组学科体系,改进教学方法与内容,构建课程量化考核体系,开展教学评估,取得了良好的效果。

我院作为首批招收医学影像技术专业的学校,自1999年开办医学影像技术专业大专班。根据全军院校教学改革工作会议精神。从教学实际出发,经过六年多来的教学改革探索和实践,取得了初步成效,供同仁参考和指正。

(一)把握规律,强调实践性教学目标。

强化实践性操作,全面改革讲习比例不合理的现状,打破理论与实践教学分段实施的界限。充分体现该专业以培养高等技术应用型医学影像专业人才为根本任务,适应基层军地卫生工作需要为目标,突出“应用”为特征,围绕动手能力强化实践性操作。以现代化教育技术为手段,彰显影像学科形象化的特点,提高教学时效比。将影像诊断学全部进入实验室授课。电子幻灯授课与学生同步阅读实片过程结合,实现理论与实践的零距离接触的事例教学的目的;将x线摄影中基本理论、x线照片冲洗化学集中讲授,x线摄影位置学部分全部进入实验室在教师实体示范操作的基础上,主要由学生分组进行操作训练,达到集中学习基本理论、分组强化规范具体操作的目的。在实习环节中,实施“导师制”,倡导学生主动实践与带教主动指导相结合并全程分段进行考核,确保实践教学的质量。

(二)抓住核心,优化课程体系与教学内容。

(三)拓视野,增强针对性教学。

1、强化第二课堂的专业知识拓展和提高专业素养和发展潜于的功能,弱化围绕专业教学以外的作用。首先设立讲座课,如医学统计学、医学科研基础、医学文献检索、医学论文撰写、医学信息管理、专业英语等。其次通过开放实验室,学生自行设计内容进行强化。对学有余力的学生,设立课题小组,老师围绕设计课题进行引导,通过查阅资料、实际操作,拓展专业知识面。

2、以外引内联方式,加强师资建设。聘请院外有实践经验的专家为兼职教授,定期来院讲课或指导工作,丰富临床实践知识;根据专业教学需要,有针对性安排教师进行专项进修、交流,根据教学实际,与医院联合进行教学、学术研究,共同促进、共同发展。

(一)实行理论与技能测评分离。

根据专业培养目标的要求,改革原有一纸定乾坤的模式,采取专业理论与专业技能分离,对于专业理论与专业技能测评,其中任何一项不合格,均认定为专业不合格,通过考核方式改变,强化专业技能要求。其中理论考核由题库生成,技能考核分口试、操作二部分,请院外专家进行测评。

(二)建立技能目标考核标准。

1、医学影像诊断学分为平时考核、课终考核、毕业考核。平时考核以各系统完成阅片诊断数量及诊断报告质量打分。课终、毕业进行双盲片考核,抽取各系统一张影像片,书写诊断报告。对报告结果分格式、描述内容、名词应用、诊断顺序、诊断结论等五部分,进行计分。

2、x线摄影学以具体操作内容双盲抽取。分暗室装片、机器准备、体位摆放、工具应用、条件设备、暗室洗片等六部分目标进行考评。

3、医学影像设备学以随机抽题。分原理说明、部件指定、线路分析、仪器使用等四部分测评。

(三)完善实习考核办法。

在实习手册中增加实习目标考核标准,完善实习双向(学与教)督促机制。按专业课分医学影像诊断、医学影像检《现代医用影像学》2006年12月第15卷第6期查技术学二大部分,然后再各自分为普放、ct、mill三个小部分,分别设立考核内容及量化标准。对考核过程要求每一小部分由带教医生(技师)考核鉴字、每一大部分由科室会考、学校抽考的方式进行,实习结束前由学校与医院科室共同检查考核。

医学影像论文【第四篇】

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统x线、ct、mri、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的.发展,以胶片为主要方式的显示、存储、传递x-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

计算机x线摄影。

x射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,x射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极x射线管及断层摄影等。但是,由于这种常规x射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了x射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中x射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,x射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用x射线机不断出现,x光电视设备正在逐步代替常规的x射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的x线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种:(1)存储荧光体增感屏[计算机x射线摄影系统(computer)]。

医学影像论文【第五篇】

医学影像技术学是医学领域中的一门重要的基础性学科,同时也是一门较强的实践性学科。但是由于教育条件的限制,现在很多高校的医学影像技术学教学手段都还停留于单纯的理论授课方式,对于学生的实践能力培养不够全面。基于此,本文我们的主要研究重点就是关于医学影像技术学的改革问题,了解当前教学模式中存在的主要问题,从而有针对性的提出具体的解决措施,以有效的提高医学影像技术学的教学效果。

随着社会的快速发展,人们对医学技术的要求标准也越来越高,影像诊断技术作为现代医学领域中的一门重要学科,必须随着社会的发展而不断的更新完善。在这样的严酷现实之下,我们对医学影像技术学的实验教学模式提出了更高的标准,教学模式必须要打破传统的常规模式,向着更加科学化、数字化和信息化的方向发展。

医学影像技术学是一门基础性的医学科目,其在医学领域中具有着重要的地位,对于学生将来更好的适应岗位需求具有着决定性的作用。总的来说,医学影像实验教学的特殊性主要表现在以下几个方面:

1.实践应用性强。

他是一门实践性非常强的学科,单纯的理论学习并不能够让学生充分的掌握技术的要求,必须要通过有效的实验课程,让学生将理论知识与实际操作相结合,提高动手能力和临床工作能力。

2.新技术推广应用快、广。

医学影像技术学是医学中的新兴学科,它的发展速度非常的快,科研究的领域与空间十分的广,每当有新的技术手段被应用到临床医疗之中的时候,实验教学都必须要紧跟其步伐,避免出现于临床脱节的现象。

3.和其他学科联系较多。

医学影像学技术是其他多种临床疾病诊断的重要依据,它与其他的学科之间存在很多的联系。因此对于医学影像学的实验教学不仅要让学生学会操作的技能,而且还要学会应对各种疾病检查的方法。

医学影像技术学有其独特的特殊性,因此对此的学习也应该具有针对性。但是就当前医学院校的教学实际来看,很多的学校在这一学科的教学模式上还存在着很多的不足,归纳来看主要可以归结为以下几个方面:

1.实验大纲与实验教材相对滞后。

近年来,随着医学影像技术的飞速发展,很多的技术和设备都发生了巨大的变化,但是目前国内的高校使用书籍中并没有一些新技术、新理论的内容,对于医学影像技术学方面的实验指导也非常的少,涉及的新技术方面非常的窄,甚至一些教材中仍然沿用已经淘汰的技术教材,这对于学生的学习产生了很大的负面影响。

2.实验课学时相对较短。

医学影像技术学是一门实践性非常强的学科,对于他的学习主要应该采用实验教学的方式,但是由于受传统教学模式的影响,当前很多高校对于这门课程的教学模式采用的还是纯理论授课的方式,对于实验教学的课时安排的相对较少,这使很多学生虽然学到了理论知识,但却不能够切实的应用到实际之中,造成他们的岗位适应能力差。

3.实验教学手段单一落后。

以往我们的医学影像技术学实验课主要是在实验室进行的,但是由于实验室的教学条件有限,能够联系的实验内容也就不充足,一般只能够进行一些基础性的实验实践,对于当前临床医学中常用的大型数字化的设备认识不足。

随着社会的发展进步,人们对医疗水平的要求越来越高,医学影像技术学作为医疗诊断方式中的重要方式其在医疗领域中的应用越来越广,总的来说,根据当前的教学实际,进行医学影像技术学实验教学改革的措施主要可以分为以下几点:

1.学习实践活动多样化,注重在训练中学习医学影像技术。

医学影像技术的学习不是纯理论的,实验教学也具有着非常重要的地位。因此今后教学改革的方向之一就是要加强实践教学的改革,不断的引进先进的设备技术,充实教育资源,让学生能够及时的了解最新的技术手段,从而有效的提高实际操作技能。

2.注重人才的引进,加强实验教学人员队伍建设。

师资能力的不足是当前影像教学效果的主要原因之一,原来一名实验教学需要带一个班级的学生,这大大的增加了教师的工作量,也弱化了对学生的时时指导强度。通过人才引进培养的方式,加强实验教学人员的队伍建设,提高实际的教学人数可以大大的改善教学的环境,让学生更加充分的享受教师资源。

3.健全实验教学教材和资料库。

随着一系列的改革发展,我们要根据技术发展的实际,不断的将最新的医学影像技术编撰到教材用书之中,让学生及时的了解当前的技术形式,从而更好的掌握技术能力。同时我们也要逐步的完善资料库,保证每一个学生都有充足的资料来源。

综上所述,医学影像学实验教学有其独特的特殊性,这决定了它需要不断的进行发展,根据当前各医学高校的实际教学情况,结合临床实际需求和医学影像技术的新进展,不断的进行实验教学改革,为学生走上临床工作岗位打下坚实的基础。

[1]汪百真,俞曼华,张俊祥,曹明娜。医学影像检查技术学实验课程的改革与创新[j]。蚌埠医学院学报,2013,07:919—921。

[2]王惠方,梁长华,杨瑞民,陈杰,岳巍,刘儒鹏。医学影像诊断学实验教学模式改革[j]。中国医药指南,2013,21:774—775。

[3]邱建峰,谢晋东,王晓燕,王鹏程,侯庆峰。医学影像物理学(医学影像成像理论)教学与实验改革的探讨[j]。中国医学物理学杂志,2008,03:700—702。

[4]陈晓光,任伯绪,柯茜茜,陈奕。医学影像技术学实验教学的改革与实践[j]。中国高等医学教育,2011,11:55—56+69。

医学影像论文【第六篇】

性别:女。

出生日期:

民族:

身份证:

身高:

户口所在:吉林。

目前所在:北京。

毕业院校:北华大学。

政治面貌:党员。

最高学历:大学本科。

所修专业:医学影像专业。

人才类型:

毕业日期:

求职类型:全职。

应聘职位:影像诊断医师。

希望地点:北京及东北三省。

希望工资:面议。

其实每个人都很优秀,每个人也都有他的不足之处。我认为一个人做事就要尽力把这件事做好,不管它对你有没有意义,但既然做了就要尽力做到更好。

xx年9月至xx年6月北华大学(原吉林医学院)医学影像专业本科。

xx年7月在北京中日友好医院实习至今,先后轮转x线,ct和mri科室,超声科,核医学科以及放疗科,能对各种常见疾病作出准确诊断,能够熟练操作dr,cr,ct,mri等影像设备,实习期间受到老师的一致好评。

大学期间多次获得二等级三等奖学金。

xx—xx年度获“国家励志奖学金”

英语熟悉级别:四级。

医学影像论文【第七篇】

随着医学影像技术技术与设备的发展,它在医学领域中的地位日趋重要,医学影像技术的发展,在某种意义上代表着医学发展潮流中的一个热点趋势,推动了医学的发展,尤其是介入放射学的出现,使放射从单纯的诊断演变为既有诊断又有治疗的双重职能,并在整个医学领域中占有举足轻重的地位,成为与内外妇儿并列的临床学科。展望21世纪,医学影像学必将得到更快、更好及更全面的发展,必将会对人类的健康做出更大的贡献。本文通过对近些年所取得的成就讨论医学技术与设备的发展。

x射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,x射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极x射线管及断层摄影等。但是,由于这种常规x射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了x射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中x射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,x射线机的结构简单,图像分辨率也较低。在50年代以后,分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用x射线机不断出现,x光电视设备正在逐步代替常规的x射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的x线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种:。

(1)存储荧光体增感屏[计算机x射线摄影系统(computer)]。

(2)硒鼓探测器。

(3)以电荷耦合技术(chargecoupled)为基础的探测器。

(4)平板探测器(flatpaneldetector)。

a:直接转换(非晶体硒)。

医学影像论文【第八篇】

介绍医学影像发展的历程ct成像技术的优势和影像技术在数字化中的发展说明pacs系统基本原理与结构及采用这种体系结构的意义;指出影像学的发展对医学诊断过程具有极其重要的意义。

发展、成像技术、数字化。

影像学诊断是世纪医学诊断最重要发展最快的领域之一。ct的研制始于世纪6年代。1967年英国的工程师汉斯菲尔德开始了模式识别的研究工作。5年代x线透视和摄片是临床最常用的影像学诊断方法而今天由于x线ct技术的出现和应用使影像学诊断水平发生了飞跃从而极大地提高了临床诊断水平。即计算机体断层摄影(ct)即是利用计算机技术处理人体组织器官的切面显像。x线ct片提供给医生的信息量远远大于普通x线照片观察所得的信息。

ct成像技术的优势:ct与常规的影像学检查手段相比主要有以下四个方面的优点。

真正的断面图像:ct通过x线准直系统的准直可得到无层面外组织结构干扰的横断面图像。与常规x线体层摄影比较ct得到的横断面图像层厚准确图像清晰密度分辨率高无层面以外结构的干扰。

密度分辨率高:ct与常规影像学检查相比它的密度分辨率最高。其原因是:第一ct的x射线束透过物体到达检测器经过严格的准直散射线少;第二ct机采用了高灵敏度的、高效率的接收器;第三ct利用计算机软件对灰阶的控制可根据诊断需要随意调节适合人眼视觉的观察范围。一般ct的密度分辨率要比常规x线检查高约倍。

可作定量分析:ct能够准确地测量各组织的x射线吸收衰减值通过各种计算可作定量分析。

可利用计算机作各种图像处理:借助于计算机和某些图像处理软件可作病灶的形状和结构分析。采用螺旋扫描方式可获得高质量的三维图像和多平面的断面图像。

医学影像论文【第九篇】

随着医院影像设备的发展与增多,影像学检查在医院诊疗工作中的应用也越来越普遍。传统的影像存贮介质如胶片、磁带、光盘等随着影像数据量的激增,给存放和查找带来了严重问题,如何更好地存储并保证这些数据的安全,则需要采用先进的数字化影像管理方法来加以解决。

医学影像存储与传输系统(picturearchivingandcommunicationsystem,pacs)是以数字成像技术、计算机技术和网络技术为基础,旨在全面解决医学影像获取、显示、处理存储、传输和管理为目的的综合系统。pacs系统是数字化医院建设的重要组成部分,它为医院电子病历、区域协同医疗等提供支撑,所以规划一套符合医院发展,具有性能优越、易于扩展、容错能力强的pacs存储系统,是pacs系统建设的核心。

1)稳定可靠原则。

数据中心建设以稳定可靠为首要原则,从主机服务器和网络系统,到各种协议的存储设备,都应该确保应用系统的业务连续性为首要目标。系统应当支持7x24不间断运行,单台或局部设备发生故障时,仍能保证整个系统正常运行。每一个影像实例需要有多个拷贝,且同时存在于两地,实现院级容灾。

2)先进性原则。

在采用主流成熟技术的同时,需要考虑系统架构的先进性,建立一个灵活高效、功能丰富、持续发展的数据中心基础架构。可以在保证业务连续性的前提下,自由增加磁盘阵列、服务器、带库等设备保证整个系统存储空间和处理能力不断提升,系统应该能支持影像数据有损和无损压缩。

3)高效性原则。

系统应当可以实现高速查询和调阅图像,能够在尽可能短的时间内完成在线调阅。

4)易于管理。

系统是否易于维护,操作是否直观、简单、维护成本如何,掌握的难易程度如何,是否存在对有限资源(如关键人员,设备等)的依赖?能否对分布环境的异构系统统一管理,是否具备完整的日志管理,每一步操作能否全程追踪。

信息互通。

医学影像系统作为医院信息系统的一部分,应采取模块化设计、尽量采用通用的信息交换标准如dicom,能够与其他系统相互沟通信息,医生在查看检查图像的同时,能够了解检查报告、病人的病历等其他信息,形成一个医院的信息整体。

图像预处理技术。

医学图像因其数据量大,传输需要占用很宽的网络带宽资源。而医院工作的特点是对图像数据的突发性要求高,例如在病人刚入院时需要调用大量的病历数据,也包括图像数据,而平时则主要局限于使用住院病人的资料。收集整理在这样的环境下,信息系统网络的平均带宽需求与高峰时的需求差距非常大。要想既满足医疗的需要又降低整个系统的成本,使用图像预取技术是能够充分利用信息系统网络资源的办法。预取技术的核心就是根据病人入出院以及预约的信息,利用网络通讯的低谷时间将所需要的病人图像事先传输到医生所需要的地方,以减少网络高峰时间的压力,同时也提高医生存取图像时的速度。要实现图像预取的基础是pacs必须与医院的其他系统能够很好地进行信息沟通,同时也要研究一个合理的预测算法。

ct、mri、cr、dsa等数字化影像设备的图像可以直接从机器中采集外,目前大量使用的胶片图像需要使用胶片扫描仪输入到pacs中,由胃镜、肠镜、腹腔镜、宫腔镜、喉镜、纤支镜等内窥镜及显微镜、b超等检查设备产生的视频模拟影像转换为数字影像。影像数据一旦形成就不会再改变,对影像的标注、解释等可通过另外保存数据实现。

、构建pacs存储系统。

1)估算出医院每天pacs的数据增长量,然后决定是采用什么样的存取方式。一般情况都应采用san存储架构,利用专门的存储网络实现主机系统对磁盘的块级存储数据调阅,保证业务网的调用仍通过以太网的方式进行数据传输,而大量的数据存储、备份则通过san网络进行,减少业务网的压力,提高整个pacs系统性能。

2)对存储介质容量进行需求分析并合理规划。

临床上对病人影像的回溯按照访问量可以分成3类:第一是短期数据的回溯,无论影像科室自己还是临床方面最关心当前病人的影像,短期数据的标志为3个月内的数据,这些数据的回访占总访问量的90%;第二是对当前病人的前期存档图像的回访,病人又来医院看病了,临床医生需要翻阅他以前的影像资料,这种回访大约占9%;第三是个别的影像查询,占回访的不足1%。另外系统必须具备必要的响应速度,高响应速度是pacs系统是否具有生命力最为重要的因素之一。从点击病人姓名到显示出第一幅图像的时间,这段时间越短越好,应限制在10秒以内。对此我们可以进行影像的分级存储,保留近三个月的数据,作为热点数据,存储在存取速度最快的fc或高性能sas盘上,而对三个月以上的影像数据,相对阅读频率较低,可以存储在多套相对廉价的sata盘中。为了节省空间,针对医学图像中含有的无用信息,需采用有效的图像无损压缩再进行存储。

3)面对未来大数据,我们可以从数据中心的角度去设计,而不是单纯的从购买一两套存储角度去设计,将数据中心从传统的san孤岛向虚拟化统一平台过渡,构建虚拟化云存储架构。

构建不间断的服务器群。

pacs服务器控制着放射科工作流程和医院整个图像数据流程。它负责接收图像采集设备送来的图像,并把它们存储到存储设备中;对于临床用户,pacs服务器还提供病人图像查询提取服务。不同功能模块不同的服务器单独运行在不同的服务器或刀片机上,通过san网络交换机相互连接,这样就形成了均衡负载、互为镜像和备份、容错功能强大的服务器群,从而保证了pacs数据中心能够不间断地稳定工作。

影像数据获取后先存放在高性能的主存储中,同时按照一定的策略,将数据分别复制到两个物理位置不同的归档备份存储中,保证一个影像至少有三个拷贝同时存在,并且保证两套归档备份存储,分别存在于两地,存储间互相冗余,互为备份构成院级容灾备份。当在线存储出现故障时,可以启用第一套或第二套归档存储替代。

硬件冗余。

利用多台光纤交换机形成冗余结构,防止san网络中的单点故障。存储设备本身应该具有良好的性能,主要部件应做到冗余,同时为了应对由于磁盘阵列中磁盘故障问题而引发的数据丢失,还应该购置一定数量的备用磁盘作为备用,一旦阵列中有磁盘报警或故障,就可以及时更换,然后再向厂家保修,避免数据丢失。

其他安全措施及制度上的强化。

所有影像设备应由服务器统一管理,防止非授权设备接入;所有浏览站点也由服务器统一影像数据和权限控制,预防用户私自修改或删除数据;影像设备网段和医院其他业务网段分开,避免业务网段的工作站直接访问影像设备。

建立健全配套的日常维护制度:比如设备巡检,非法软件删除,定期杀毒,更换密码,查看后台日志和空间使用情况,系统压缩归档备份是否正常等等。

随着数字化医院的建设,建设一套符合医院发展,整体性能优越、容错能力强的先进的pacs系统,不但可以有效的提高pacs系统使用效率和经济利益,更可为区域医疗提供可靠的基础。

医学影像论文【第十篇】

传统的课堂学习模式———授课式教学法(lecture-basedlearning,lbl),是以教师唱主角的“填鸭式”教学,不适用于注重实践技能训练为主的医学影像教学,而fc要经历事先预习、自主练习、课堂讲解与答疑、教师总结四个阶段。fc的实践过程中,在上课前要做好准备工作。学生方面,需要提前学习教材、观看提前录制的教学视频,并在各个学习小组内交流学习心得;教师方面,需要精确把握学生在课前预习中的重点疑难问题,设计相应的课堂讨论问题。在课堂上,教师应与学生积极互动,组织学生积极参与小组讨论,并及时解答学生在讨论过程中提出的问题。在影像诊断学的教学中,以fc模式实现教学目的,以实际教学情况为基础,将学习过程中的知识传递和积累过程放在课前。在多媒体、ppt、图片存档及通信系统(///picmunicationsystems,pacs)、医院信息系统(hospitalinformationsystem,his)系统等计算机互联网等信息技术的支持下,实现知识传递;课上通过自主、合作、师生共同答疑等形式,完成学生对知识的吸收内化。本文旨在探讨fc在医学影像学教育中的实践应用价值。

二、研究对象。

研究对象为本校全日制临床本科生42名,从中随机分成两组,即对照组(lbl教学组)和实验组(fc教学组),其中对照组21名,年龄(±)岁,男10名,女11名。实验组21名,年龄(±)岁,男9名,女12名。两组学生的性别及年龄比较,差异均无统计学意义(),两组之间具有可比性。

三、教学方法。

对照组采用lbl教学方式,上课形式为传统模式,即以带教老师授课为主。老师利用多媒体、ppt及pacs进行课堂授课,课后学生可以提问,由教师解答并总结。实验组采用基于微课的fc教学模式进行授课。

关于教学视频制作:

(1)视频的平均时长为15~20分钟;。

(3)视频结构独立,每个视频均基于某个知识点或教学主题建立独立知识模块;。

(4)各知识模块关联组合构成主题明确、内容完整的结构化知识单元。

课前学习阶段:课前共享教学视频,让学生自主学习教学视频,同时在组内微信群里相互讨论,并独立完成视频中的测验,同时在群中提交课前布置考核内容;教师分析学生考核内容完成情况,制订不同的`讨论问题,设计与调整fc的授课内容。

(3)小组讨论:以小组为单位,派代表对该节课内容进行回顾总结,之后教师针对各个小组提出的问题进行个性化指导。

课后阶段:每堂课结束后均进行课后考核以评价学生的学习效果。

考核方法包括笔试及口试,主要考核学生课堂上掌握的理论知识及应用能力。笔试由教师根据教学大纲及当堂的授课内容,准备4道填空题(每题5分)及2道问答题(每题15分),进行闭卷考试,满分为50分,由1位老师进行盲评。口试根据当堂教学内容和要点,根据课堂人数由教师准备相应数量的病例(21例),由学生抽签选择题目,每人抽一个病例,并现场对所抽取的病例进行影像学描述与分析,老师给予现场点评并评分,满分为50分。笔试和口试的总得分为该学生的最终得分(满分为100分)。统计学处理用统计软件进行数据分析,总共62次课,每个学生的笔试、口试和总成绩均计算学年平均分。

对实验组和对照组学生的笔试平均分、口试平均分和总成绩平均分,分别进行两组独立样本的t检验,以为差异具有统计学意义。结果实验组和对照组的课后考核成绩,包括笔试、口试及总分成绩,均有显著性差异(),实验组的考核成绩均高于对照组,如表1所示。其中以口试及总分成绩显著性最明显。

讨论。

传统lbl教学普遍存在两个矛盾———既定的教学进度与参差不齐的学生知识掌握速度之间的矛盾,教师共性化教学与学生个性化认知的矛盾。fc通过采用先进信息技术,变“教”为“学”,是对传统教学的全面改革,从本质上强调以学生为中心,用问题引导,学生自主学习和合作学习的主动学习模式。fc不仅可以提高学生学习的主动性、精力集中程度,还提高了团队合作能力、时间管理能力、沟通能力、语言表达能力等。本研究结果显示,实验组课后考核成绩优于对照组,基于微课的fc教学模式适用于医学影像学的教学,并取得了良好的效果,表明该教学模式在医学影像学教学中具有应用价值,尤其学生对影像征象的描述、疾病影像诊断及鉴别诊断等方面的能力起到了促进作用。

取得该效果的原因考虑为本研究遵循了基于微课的fc教学设计三原则:

(1)有利于学生知识的建构和内化;。

(2)有利于实现分层教学;。

(3)有利于学生对学习内容的掌握。

关于课前的知识学习,fc通过将教学视频共享给学生,使学生能够在课前自主掌握学习的进程,但这种学习可以在任意时空进行,自主性较强,因此如何确保学生在课前有效观看视频是关键问题。

可以通过以下几点提高课前学习效率:

(1)提前与学生沟通如何更好地在课前观看视频,并记录发现的问题;。

(2)要求每位学生至少带一个与视频内容有关的问题进课堂;。

(3)视频中添加小测试,以便学生自己检查自身观看情况。

教师根据课前预习情况,针对性地设计课堂讨论的问题。在课堂上,教师与学生积极互动,组织学生积极参与小组讨论,并及时解答学生在讨论过程中提出的问题。关于重点与难点问题,选择相应主题的微视频,并有针对性地进行讲述与解答,使学生能够提升学习效率。课堂上的微视频,打破了传统课堂的单调与乏味,使课堂形式多变、具有活力,使学生能够提高学习兴趣。通过这种有组织、有目的的教学形式,最终可以强化知识的传授,并达到增强教学效果的目的。在fc教学模式下,教师在课堂上所起的作用发生了相应变化,教师从“独角戏”走向“大合唱”。另外,fc的授课形式一定程度上符合时代与社会进步的节奏,教师的教学形式也变得丰富。

在授课过程中,教师还可以有针对性地及时解答学生听课过程中的疑惑。这种靶向性的新型教学模式避免了教学中的盲点,而且能让学生最大程度地发挥主观能动性,最重要的是可以根据不同学生的学习基础进行教学指导,因人而异,因材施教,促进学生对医学影像这门课程的学习热情,提高掌握程度,从而促进教学水平的全面提高。但是,该教学模式在本学科应用中还存在一些不足,如制作微课的人力、物力、财力要求较高。其次,临床专业医学生对非本专业课程学习热情不高,课外学习缺乏动力。另外,学生课前学习的自觉性差异较大,且对其学习过程的监控存在困难。

参考文献:

[8]jonathanbergmann,urstudents餖earning[j].,70(6):16-20.

相关推荐

热门文档

48 3321599