2024年高中数学教学设计案例实用(5篇)
高中数学教学设计案例通过明确教学目标、合理安排教学活动、结合实际应用,促进学生理解和掌握数学知识,培养逻辑思维能力与问题解决能力。以下是小编整理的优秀范文“高中数学教学设计案例”,希望您喜欢。
高中数学教学设计案例【第一篇】
1.把握菱形的判定。
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。
3.通过教具的演示培养学生的学习爱好。
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:菱形的判定方法。
2.教学难点:菱形判定方法的综合应用。
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
复习提问
1.叙述菱形的定义与性质。
2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.
引入新课
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法。
此外还有别的两种判定方法,下面就来学习这两种方法。
讲解新课
菱形判定定理1:四边都相等的四边形是菱形。
菱形判定定理2:对角钱互相垂直的平行四边形是菱形。图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。
分析判定2:
师问:本定理有几个条件?
生答:两个。
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直。
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等。
(由学生口述证实)
证实时让学生注重线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线,但都不是菱形。
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。
例4已知:的对角钱的垂直平分线与边、分别交于、,如图。
求证:四边形是菱形(按教材讲解).
总结、扩展
1.小结:
(1)归纳判定菱形的四种常用方法。
(2)说明矩形、菱形之间的区别与联系。
2.思考题:已知:如图4△中,平分,交于。
求证:四边形为菱形。
八、布置作业
教材p159中9、10、11、13
高中数学教学设计案例【第二篇】
提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。高二下学期必修3有三章(算法初步;概率;统计);选修2-3有三章(计数原理;随机变量及其分布;统计案例);选修4-5(不等式)。
必修3,主要涉及三章内容:
第一章算法初步
1、算法的含义、程序框图。通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
2、基本算法语句。经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
3、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
第二章概率
1、在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
2、通过实例,了解两个互斥事件的概率加法公式。
3、通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
4、了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
5、通过阅读材料,了解人类认识随机现象的过程。
第三章统计
1、随机抽样、能从现实生活或其他学科中提出具有一定价值的统计问题。结合具体的实际问题情境,理解随机抽样的必要性和重要性。在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
2、用样本估计总体。通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。形成对数据处理过程进行初步评价的意识。
3、变量的相关性。通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
选修2-3,主要涉及三章内容:
第一章计数原理
计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。是学习排列、组合和概率理论的基础,也是培养学生数学思维能力的良好素材。
1、重视基本概念教学,正确区分分类与分步,通过具体问题情境和实际事例,让学生不断感悟和总结两个基本计数原理,并能应用两个原理解决问题,分类要做到不重不漏,分步要做到步骤完整。
2、在分析排列、组合应用题时,应充分利用列举法和树形图进行分析,让学生从直观,感性上理解问题,辨别排列与组合问题,总结规律,探究快捷解决问题的途径。
3、通过实例,总结分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题。的含义。
第二章随机变量及其分布列
学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差及内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念,观察、分析问题的意识。
1、随机观念贯穿于这部分内容的始终。首先要认识离散型随机变量的分布列对刻划随机现象的重要性;其次掌握超几何分布、二项分布是两个非常重要的应用广泛的概率模型。
2、通过实例,理解所有的概念,避免过分注重形式化的倾向。教学中不应简单从抽象的定义出发,机械地模仿,得出概念。重点是理解离散型随机变量及其分布列、均值、方差、正态分布的概念。
第三章统计案例
学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
1、教学中应该通过生活中详实事例理解回归分析的方法,其步骤为通过散点图,直观地了解两个变量的关系,然后,通过最小二乘法建立回归模型,最后通过分析残差,相关指数等,评价模型的好坏。
2、教学中应用实例分析总结得出独立性检验的意义,并且认真体会独立性检验的基本思路,类似于反证法,会用类比的思想方法得出独立性检验的基本步骤。
3、回归分析注重步骤和过程,鼓励学生经历数据处理的全过程,要尽量使用统计图直观展示两个变量的关系,培养学生对数据的直观感觉,有条件的学校要利用统计软件画散点图、进而直观判断它们是否线性相关,然后在线性相关前提下尝试用线性回归模型来拟合,最后还通过相关指数和残差分析来判断拟合效果。
选修4-5,主要涉及一章内容:
第一章不等式
在本专题教学中,教师应引导学生了解重要的不等式都有深刻的数学意义和背景,例如本专题给出的不等式大都有明确的几何背景。学生在学习中应该把握这些几何背景,理解这些不等式的实质。主要考察绝对值不等式的解法,这也是我们讲课的重点。本专题特别强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力。
1、回顾和复习不等式的基本性质和基本不等式。
2、理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:
(1);
(2);
(3)会利用绝对值的几何意义求解以下类型的不等式:
高二下学期的授课内容为必修3和选修2-3及选修4-5,必修3和选修2-3的前两章在期中考试前完成(约在5月1日前完成);选修2-3第三章及选修4-5在期末考试前完成(约在7月10日前完成)。
提高数学设计探究性课堂教学设计的能力。建立一个充满生命活力的、开放的课堂教学运行机制,使教学设计真正适合学生发展的需要。建立中学数学探究性课堂教学设计的多元化评价机制。提高教师对探究性数学教学设计的评价能力掌握科学的评价方法,推动中学数学探究性课堂教学向前发展。
告知教学目标,讲述;板书或由问题引入等引起注意,激发兴趣。复习旧知识,提问;小测验等激活原有知识。呈现新知识,设计先行组织者、图表;教师讲授;指导学生自学;提供直观教材等选择性知觉新信息。
1、学习兴趣与基础
经过一段时间的观察和调查,我发现班上有一半学生对数学学习没有兴趣,问其原因,大部分都说数学太难,学不懂,老师讲的都不明白,基础太弱,导致课堂上无所事事。这样越来越对数学没有兴趣。
2、学习习惯
依赖同学的帮助,作业抄袭等等不良现象。
1、加强基础知识教学。了解到学生目前的学习情况,大部分学生对初中的相关知识掌握不好,利用自习课或课余时间为他们补充初中知识的盲点,加强基础知识。同时在上课的时候,以基础简单题目为主,争取让大部分学生在课堂上有所收获。
2、加强合作学习。对于班级出现的两极分化情况,发动成绩好的学生带动基础薄弱的学生,促使大家共同进步。
高二下学期
算法初步(必修3)9课时
概率(必修3)10课时
统计(必修3)8课时
计数原理(选修2-3)10课时
随机变量及其分布(选修2-3)15课时
统计案例(选修2-3)3课时
不等式(选修4-5)5课时
高中数学教学设计案例【第三篇】
二、教学目标分析
1.知识目标
1)
2)掌握等比数列的定义理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四.教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
高中数学教学设计案例【第四篇】
按照传统的教学理念来说,教学设计主要是指有效地运用相应的教学系统,有效地将教学与学习理论逐渐转变为有效地对教学参考资料和教学活动具体规划实现系统化的整个过程,其中教学内容、教学方法和教学效果问题在教学设计当中得到有效的解决.也可以说,所谓的教学设计就是将教学具体活动步骤制定成合理的教学方案,同时在教学结束后对教学过程进行相应的评估与总结,从而使教学效果得到提升,并实现对教学环境的优化工作.
高中数学教学设计案例【第五篇】
《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
该内容在《普通高中课程标准实验教科书·数学(1)》(人教a版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;
3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
课堂准备
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。