最新找次品教学反思不足与改进大全18篇
教学中对次品的识别与处理方法需加强,实践环节不足,需增加案例分析与讨论,提升学生的实际操作能力与思维深度。以下是小编整理的优秀范文“找次品教学反思不足与改进”,希望您喜欢。
找次品教学反思不足与改进 篇1
"找次品"是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法,找次品教学反思。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课,我认为有以下几点优点与不足。
(1)导入激发学生学习热情
(2)民主导学中渗透"退"也就是"化繁为简"的数学思想
(3)展示交流中体验"猜想与验证"的数学思想方法
猜测与验证是学生开展数学活动的一种重要思想方法。正如荷兰数学教育家弗赖登塔尔所说"真正的数学家——常常凭借数学的直接思维做出各种猜想,然后加以证实。"因此小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。本节课就让学生经历了"实验探究——猜想——验证——归纳"的过程。首先从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少那?为了验证这一猜想,就必须再用一个例子去实验,最后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索,获取知识的能力,增强了学好数学的信心。
在得出待测物品是3的倍数后,我适当将知识进行了拓展,学生经过观察后,很快地分别说出了所要称的次数。这一拓展,有效地开启了学生的思维。当然不足之处也有很多:
(1)本节是思维训练课,但最终是不是所有的同学的思维都得到了不同的发展呢?现在反思一下,确实课堂上还有一部分同学一直很"安静",那就是他们的思维根本就没有调动起来。
(2)另外所用的`图示的办法,应该多做讲解,要让每一位同学能熟练的运用它。
(3)在板书中由于看到黑板是一块,本来设计的板书临时改为2列,结果出现了板书中"操作方法"占了2行。
总之,这次教质活动给我了一次很好的锻炼机会,找到自身的不足,方可对症下药!我深信,只要我们想方设法摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长辅垫出一条坚实之路!
找次品教学反思不足与改进 篇2
《找次品》一课是以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。在教学中,我主要力求体现以下三个方面的教学设计意图。1.从简单问题入手,理解找次品的含义,并用直观方式清晰地表达推理过程。
学生在本单元学习之前很少接触“找次品”问题,没有相关的学习与生活经验。而教材中的“次品”与日常生活中提到的“次品”有所不同:它指从外表看完全相同的零件,其中重一些或轻一些的那一个就是“次品”。首先,让学生认真读题,充分理解题意,理解“找次品”的意思,了解“正品”“次品”的含义,丰富生活经验。3个零件中有1个较重的次品,任意取2个放在天平两端,天平有可能是平衡的,也有可能是不平衡的。非常重要的一点,这里所指的天平并不是一架实物天平,而是利用天平平衡原理抽象出的数学化形式的天平,借助它进行逻辑推理。说理时,引导学生尽量用规范的语言“如果天平平衡……如果天平不平衡……”来表述。在此基础上,让学生把推导的过程用直观图或流程图辅以文字说明来记录和推导,这一点尤其重要。2.充分经历“比较——猜测——验证”的探究过程,理解找次品的最优策略“至少称几次能保证找出次品”是理解的难点,这里要让学生理解“能保证”是指每一种可能的情况都要考虑,“至少”就是指在保证一定能找出次品的各种方法中称量次数最少的那种方案。“找次品”的最优策略有两个要点:一是把待测物品分成三份,二是尽量平均分。教学时从“8个”的情形开始,通过小组合作的方式,让学生将推理过程用直观图清晰、简洁地表示出来,然后将找次品的不同方案记录下来。从8个零件中找次品,学生会很自然地想到平均分成两份(4,4),但会发现运用这种分组方法称的次数不是最少的,分成3份(3,3,2)的方法才能使称的次数最少。使学生体会到只有将次品确定在更小的范围内,称的次数才会越少。有了在8个零件中找次品的经验,接下来处理在9个零件中找次品的问题时,受天平平衡原理的暗示,学生会自然想到(4,4,1)和(3,3,3)的分法。把两种方案进行对比,感受到分成三份的情况中,平均分的方法称的次数最少。如果不能平均分呢?再去研究在8个零件中找次品的最少次数,会发现尽可能平均分可以使称的次数最少。最后层层递进,逐渐感知理解找次品的最优策略。3.关注个体差异,注重“说”的训练,初步感受“化归”思想通过练习进一步理解巩固找次品的问题,在练习中要对学生进行分层要求。在找次品的过程中,允许学生借助直观学具推理、用直观图或流程图直接推理、用口头叙述。让学生多“说过程”,通过说体会到“尽可能将待测物品平均分成三份”的最优策略,培养逻辑思维推理能力。有了例题的学习经验,学生在练习时就可以直接利用前面已有的结论。如“做一做”中将28瓶盐水分成三份(9,9,10),称一次后就转化为“从9个或10个物品中找次品”的已学知识。
找次品教学反思不足与改进 篇3
《找次品》这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。第一次接触到这样的内容让我不知所措,脑中一片空白,学生该如何学?我该怎样教?于是我认真的阅读了教材及教学参考书,在认真思考以后,确定了自己的教学方案。
在教学过程中,我首先让孩子们明白三点:第一、当物体放在天平的两端时会出现平衡和不平衡两种情况;第二、要想通过天平的平衡与不平衡找到次品,那么天平两端的物体个数必须相同。第三:次品就是大小、形状、颜色完全相同,但质量稍重或稍轻的物品。理解了这三点以后,首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?接着学习4、5、6…个,让学生想象着用天平找出次品,比较不同的方法之间的相同点和不同点,找出哪种方法称的次数最少。得出要使称的次数最少,应该把物体分成3份;能平均分的要平均分,不能平均分的,多的一份与少的一份要相差1。
在这节课中,存在着许多的不足:
教材设计的是让学生从8包糖果中找出质量不足的,目的是让学生经历找次品的过程,体验“要使称的次数最少,应该把物体分成3份;能平均分的要平均分,不能平均分的,多的一份与少的一份要相差1”这个规律,它遵循了学生的认知规律。而我觉得不管是8、9、10…个次品,都离不开3、4、5…个次品的学习,只要学生弄会了如何从3、4、5…个物品中找出次品,其他数字大的物品找次品都会迎刃而解。因而我没有按教材的编排教学,而是首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?接着学习4、5、6…个,这个想法挺好,可实际教学中效果并不好。因为找次品的规律只有在数字达到8以上,优越性才能体现出来,我和学生一起从3个物品找次品,太占用时间了,大量的时间浪费在讨论从4、5、6个物品中找次品,直到快下课才讨论到8个物品,学生已经注意力不集中了,对教学内容也失去了兴趣。
这节课的关键是让学生得出要使称的次数最少,应该把物体分成3份;能平均分的要平均分,不能平均分的,多的一份与少的一份要相差1。受前面教学影响,我没有做好点拨,只是让学生浏览了课本,画出来,学生没有深刻的体验到这个规律的优越性。
找次品教学反思不足与改进 篇4
首先,我以讲故事美国航空飞机爆炸导入,抓住学生好奇心理,(飞机的爆炸真的和一个次品有关)课一开始,发挥学生对新课学习的积极性和主动性,形成主体意识。而后又加以课件来解决他们心中的某些疑问,这样能激发学生学习的热情。
我在教学中体现了华罗庚“退”的数学思想——善于“退”足够“退”,“退”到最原始而不失去重要性的地方,也是学好数学的一个诀窍。把复杂的问题退回简单化,再从解决简单的问题中发现规律,用这个规律解决复杂的问题。在本节课的开始我就设计了让学生猜“从81瓶钙中找一个次品,用天平称,至少要称几次就一定能找出次品”学生猜无论如何都要81次,有的说42次。要解决这个难题,我们首先研究2瓶,3瓶5瓶等逐渐寻找规律和方法,最后找到“平均分3份来称所需次数最少”的方法,然后用找到的方法来解决从81瓶中找次品的问题。后来经过探究后发现从81瓶中找次品只需4次即可,在这种强烈的对比之中学生感受到数学思想方法的魅力,数学的奇妙!从而激发了学生数学的学习欲望。
猜测与验证是学生开展数学活动的一种重要思想方法。正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直接思维做出各种猜想,然后加以证实。”因此小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。本节课就让学生经历了“实验探究——猜想——验证——归纳”的过程。首先从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少那?为了验证这一猜想,就必须再用一个例子去实验,最后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索,获取知识的能力,增强了学好数学的信心。
在得出待测物品是3的倍数后,我适当将知识进行了拓展,学生经过观察后,很快地分别说出了所要称的次数。这一拓展,有效地开启了学生的思维。当然不足之处也有很多:
(1)本节是思维训练课,但最终是不是所有的同学的思维都得到了不同的发展呢?现在反思一下,确实课堂上还有一部分同学一直很“安静”,那就是他们的思维根本就没有调动起来。
(2)另外所用的图示的办法,应该多做讲解,要让每一位同学能熟练的运用它。
(3)在板书中由于看到黑板是一块,本来设计的板书临时改为2列,结果出现了板书中“操作方法”占了2行。
总之,这次教学优质活动给我了一次很好的锻炼机会,找到自身的不足,方可对症下药!我深信,只要我们想方设法摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长辅垫出一条坚实之路!
找次品教学反思不足与改进 篇5
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”我这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。在本课的教学中有这样几点做得比较好:
教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从5个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了8个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了9个找出次品,这次提高难度要通过写一写的方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题。这过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。让学生经历探索数学知识的过程。围绕问题的解决,让学生经历探索数学的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受数学思想方法,提高他们的数学思维能力和解决问题的能力。
本节课的活动性和操作性比较强,沈佳老师让学生借助圆片,以动手操作为手段,以思维训练为目的,把5个零件和8个零件作为学生研究的起点,放手让学生操作探索,让学生通过操作、思考、讨论、交流去获得数学知识,使学生得到主动发展。
虽然本课从整体上来看还是比较成功的,达成了预设的教学目标,但是有些细节问题还是应该注意的。如:对于孩子们发言的点评还应该再有一些针对性;时间的控制再合理些,如在5个中找次品的时间再压缩一些为8和9再节省出一些时间会更好。让课堂时间分配更加合理。
找次品教学反思不足与改进 篇6
“找次品”是人教版数学五年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。一方面注意让学生进行合作学习,小组交流,经历找次品的过程;另一方面注意引导学生体会解决问题策略的多样性。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
(一) 情景的创设
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
(二)难点转化, 降低教学起点
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3盒木糖醇中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
(三)层层推进,符合小学生的认知规律
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
(四)、知识拓展 ,巩固提高
当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在备课时我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。
(五)运用多种教学方法,提高效率
在教学过程中,充分的运用了研究性学习的教学 方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
找次品教学反思不足与改进 篇7
“找次品”是五年级下学期数学广角中安排的教学内容,其目的是让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。
我首先安排了从3个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了从12个找出次品,这次提高难度要通过写一写的方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题。在教学过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。围绕问题的解决,让学生经历探索数学学习的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受最优策略的方法,提高学生解决问题的能力。
本节课中我认为还有以下方面没有做好:首先是在教学过程中有一个学生还要说不同的方法,我没有给他机会,没照顾到个体差异;再者从5个待测物品中找较轻的一个中,有一学生举出了分成“2和3”的方法,面对这一生成性的资源我没有很好地把握住机会对学生进行平均分这一概念的渗透;最后是在对从9个物品中找一个较轻的比较归纳中,总结比较仓促,使得学困生在这方面的理解上还有些困难。这些都需要努力改进和提高。
找次品教学反思不足与改进 篇8
作为一线的数学教师,我一直在不遗余力地追求心目中的理想课堂:直面学生的数学现实、尊重教师的个性创造、目标落实有效、学生持续发展。而有效的课堂教学需要教师通过不断的反思发现不足,从而改进教学设计。最近教研室开展了“一课同上,同课异构”活动,作为青年教师的我经历了两周的精心准备,并进行了多次的的课堂实践之后,感慨颇多,收获颇多,并对有效的课堂教学有了更深的认识。
找次品这节课属于思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。
我是这样设计教学过程的:先从3个零件中找一个偏重的次品,再从5瓶口香糖中找一个轻一点的次品,让学生初步掌握找次品的基本方法,接着再来分析9筐松果中找次品的方法和次数,这时进行优化,并用12个零件进行验证,最后设计的巩固练习是:有15箱饼干,其中有一箱是次品,轻一点。至少称几次一定能把它找出来?该怎么分?在教学中我让学生利用手中的学具做一做(称的过程),然后同桌说一说(怎样称的)。看着学生们动手又动脑,积极、主动地参与研究,我也禁不住加入其中。精心预设后的课堂显得更加活跃,更加生机勃勃。在这时问题出现了,学生在验证时发现12个零件不用平均分成3份,平均分成4份,3个3个的也可以只用3次就找到次品。我随即问道:“有没有比平均分成3份更少的分法?”学生:“没有。”“一般情况下我们就平均分成3份去称,次数一定是最少的。”我仓促的进行了小结。40分钟的课堂就这样结束了,带着遗憾,带着疑问下了课。
课后我又反复解读教材,回忆着课堂上的一个个镜头,听了其他老师的点评和建议,我重新备课,又进行了第二次上课。
这次我是这样预设的,把3个零件和5瓶口香糖作为学生研究的起点,3给以最优策略的暗示,5给予学生研究方法的指导,师生结合共同研究,训练学生的逻辑思维能力和表述能力,而9个零件是研究的主体,学生独立自主研究,找出最优方案,并体会最优方案的道理。将待测物品平均分成3份这种方法,在第一次称时,能确定合格品的个数最多。无论天平是否平衡,都能一次排除三分之二的合格品。将第二次称的范围缩小到待测物品的三分之一。经过老师的引导,学生发现了其中的奥妙。这次我把原来的巩固练习换成了有趣的小游戏——猜一猜,猜猜如果有27个、81个、243个待测物品,要想找出唯一的次品,用天平称至少称几次一定能找到次品?让学生运用本节课的知识实现思维的跨越,并从中发现规律,如果待测物品个数×3,那么找次品称的次数会加1。课堂上学生们积极举手发言,交流想法。通过观察、猜测、实验操作、画图、推理与合作交流等学习方法,使学生的思维逐步提高,进行优化思维的渗透。
本节课所研究的待测物品个数都比较特殊,都是3的倍数,刚好可以平均分成3份,我准备第二课时再研究其他普通的一些数如8个、10个等。
“学然后知不足,教然后知困”。面对新的教学内容,我们习惯性的反应就是“难”,可经过这次磨练,我才发现不是教材难,而是自己太“懒”,不愿意去学习,不愿意去思索,其实方法总比困难多。有效的课堂需要精心的`预设,有效的课堂需要不断反思。
找次品教学反思不足与改进 篇9
《数学课程标准》指出:“有效地数学学习活动不能单纯地依靠模仿和记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此在进行《找次品》的教学时,我主要是通过学生动手实践、自主探索、合作学习等方式,来凸显数学建模和优化思想。
教材的编排是先分析从5瓶钙片中找一瓶次品的方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,这时进行优化,并且延伸10、11个零件怎么分?有效地数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,因此,我通过从3瓶木糖醇中找一瓶次品——5瓶木糖醇中找一瓶次品——9瓶木糖醇中找一瓶次品——8个玻璃球中找一个次品这样的教学过程。使学生在3瓶中建立利用天平找次品的根,在5瓶中对找次品的方法进行建模,在9瓶中感受方法的多样性,及时进行优化:这种平均分成3份称的方法,所称次数最少,最后在8个玻璃球中进一步优化方法:在利用天平找次品时,首先要把物品分成3份,能平均分时就平均分,不能平均分时就尽量平均分,这样,所称次数最少。通过这样的课堂教学,既符合学生的认知规律,又能优化教学过程,从而提高课堂教学的有效性。
用天平实物进行试验,可能会出现诸多问题:学生看不太清楚,实验效果不明显;每一次称时,都需要对天平进行调节与处理,麻烦且费时。但在本节课中,又必须要借助直观演示,帮助学生建模和推理。因此,在教学中,我让学生利用天平模型来直观演示和操作,这样不仅可以节约课堂教学时间,同时又训练学生的逻辑推理,提升学生的数学思维能力,为后面脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡奠定了良好的基础。
语言是思维的载体,简洁、准确的叙述操作和推理的过程,是本节课的一个重点。因此,在学生的实践操作中,我要求学生边摆边说,从而训练学生从具体到抽象的能力和语言表达的能力。在学生的叙述过程中要求语言尽量简洁,如:在天平的两个托盘里各放2瓶,可以说成2,2一称等。通过这样一系列的训练,学生的表述会更清楚,语言会更简洁、准确,学生的思维也会更加的完整、快捷,从而提高了整节课的教学效率。
从以往的教学中发现,本课容量大,时间紧,很不容易完成预定教学任务。因此在实际教学中,根的建立,方法建模时,要求学生要简洁、准确的叙述操作和推理过程,在后面教学中,就直接利用已经发现的结论,不再重复、累赘的叙述。例如:27(9,9,9)第一次9,9一称,然后再从9个里面找次品,就直接利用前面的结论。
“找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课。
接到期末考试的时间,确实有点紧,在请教有经验的老师怎样讲的前提下,直接让学生讨论找次品的最优方法。学生说:“分组法最省时间。”我直接说:“好!下面讨论怎样分组最优方案。”
“我总结出来了,分成三份。”
“当待测物品的数量是3的倍数时,把待测物品平均分成三份,能保证用最少的次数找出次品。要平均分成三份哦!”
“说的很到位,谁还有补充。”
“当待测物品的数量不是3的倍数时,也把待测物品分成3份,每份个数尽可能接近,使多的一份与少的1份只相差1。”
“补充的很全面,把樊静祎与刘懿贤的加起来就是找次品的规律。”
“好,下面咱们来实战一下!”
让学生把小状元拿出来,开始做!由于刚才讲的快,所以让学生说答案的时候必须说思路。
没有想到,孩子们掌握的这么好!心里窃喜。
找次品教学反思不足与改进 篇10
新教材中的“数学广角”一直是教师感叹难教、学生感觉难学的内容,这次“找次品”也不例外。为了让学生低起点,拾级而上,我将例1单独作为一课时来教学。反思本课教学,有成功也有困惑:
想快捷准确地解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈”教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从2~8个零件中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作交流,的学习方式。并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现把零件分成3份称的方法最好,进一步认识“找次品”这类问题 ,探索解决问题的最优方法。
品分成3份,1、1、2,后面也应按前面格式写明“天平两边各放1个”,接着按平衡或不平衡分析,这样思维才能完整体现。经过自己的修改,我将树形图改为如下格式:
我通过在两个数字下划线的方式代表“将这两堆物品分别放在天平两边”,这样既减少了文字,又方便最后统计次数。每种情况,最后只需数一数共划了多少条横线即可,既准确、又形象。
其一、找次品的题目一般都是求“至少称几次就一定能找出次品”,在使用树形图记录中,是否必须在最后标明谁是次品。即上图是否必须像这样写:
找次品教学反思不足与改进 篇11
执教《找次品》一节课时,在导入环节,我用孩子们最常见的事物——“口香糖”引入课题,既与本课内容相关,又能提高孩子们的兴趣,从而引出“次品”。
在探索新知环节中,我让孩子从易到难,从3瓶口香糖中找出一瓶次品,然后为了让学生对所学知识产生浓厚的兴趣,我设置了一个环节:让电脑大屏滚动起来,最后停在哪个数字上,就从那个数字的口香糖中找出一瓶次品,最后电脑停在了19683瓶上,学生的兴趣陡然升高。此时老师告诉孩子们,像这种情况我们可以利用“化繁为简”的数学思想来解决类似问题,作为老师,不仅要对学生“授以鱼”,更要“授以渔”,让学生学会解决数学问题的方法。接着从6瓶、9瓶口香糖中找出一瓶次品,其中在从9瓶口香糖中找次品时,我设计了一个小组合作的活动,旨在让孩子自己在动手的过程中发现找次品的规律,发现规律后再从27瓶、81瓶、243瓶、729瓶、2187瓶、6561瓶、19683瓶口香糖中找次品,当学生发现从19683瓶口香糖中至少9次就能找出一瓶次品时,孩子们的.情绪立即达到了高潮,也加深了对新知的理解。接着我设计的是让学生发现问题:当待测物品数不是3的倍数时又该如何找次品?引导学生得出当待测物品数平均分成3份后余一瓶或余两瓶时如何放就不影响我们用天平找次品,在这个环节的设计上,旨在让学生养成勤动脑、细观察的好习惯。最后,我设计的是让学生口述出找次品的最优化策略,目的在于培养孩子的总结表达能力。
在接下来的练习环节中,通过孩子们感兴趣的闯关模式,练习由易到难,让孩子们本节课所学的知识在练习中得到升华。
执教过这一节课后,感到存在的不足是:
1、学情把握不准,准备不充分。在小组合作时,学生对待测物品分份数时,不大胆,导致老师提示过于明显。
2、对教学时间把握不好。
找次品教学反思不足与改进 篇12
作为一线的数学教师,我一直在不遗余力地追求心目中的理想课堂:直面学生的数学现实、尊重教师的个性创造、目标落实有效、学生持续发展。而有效的课堂教学需要教师通过不断的反思发现不足,从而改进教学设计。最近教研室开展了“一课同上,同课异构”活动,作为青年教师的我经历了两周的精心准备,并进行了多次的的课堂实践之后,感慨颇多,收获颇多,并对有效的课堂教学有了更深的认识。
找次品这节课属于思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。
我是这样设计教学过程的:先从3个零件中找一个偏重的次品,再从5瓶口香糖中找一个轻一点的次品,让学生初步掌握找次品的基本方法,接着再来分析9筐松果中找次品的方法和次数,这时进行优化,并用12个零件进行验证,最后设计的巩固练习是:有15箱饼干,其中有一箱是次品,轻一点。至少称几次一定能把它找出来?该怎么分?在教学中我让学生利用手中的学具做一做(称的过程),然后同桌说一说(怎样称的)。看着学生们动手又动脑,积极、主动地参与研究,我也禁不住加入其中。精心预设后的课堂显得更加活跃,更加生机勃勃。在这时问题出现了,学生在验证时发现12个零件不用平均分成3份,平均分成4份,3个3个的也可以只用3次就找到次品。我随即问道:“有没有比平均分成3份更少的分法?”学生:“没有。”“一般情况下我们就平均分成3份去称,次数一定是最少的。”我仓促的进行了小结。40分钟的课堂就这样结束了,带着遗憾,带着疑问下了课。
课后我又反复解读教材,回忆着课堂上的一个个镜头,听了其他老师的点评和建议,我重新备课,又进行了第二次上课。
这次我是这样预设的,把3个零件和5瓶口香糖作为学生研究的起点,3给以最优策略的暗示,5给予学生研究方法的指导,师生结合共同研究,训练学生的逻辑思维能力和表述能力,而9个零件是研究的主体,学生独立自主研究,找出最优方案,并体会最优方案的道理。将待测物品平均分成3份这种方法,在第一次称时,能确定合格品的个数最多。无论天平是否平衡,都能一次排除三分之二的合格品。将第二次称的范围缩小到待测物品的三分之一。经过老师的引导,学生发现了其中的奥妙。这次我把原来的巩固练习换成了有趣的小游戏——猜一猜,猜猜如果有27个、81个、243个待测物品,要想找出唯一的次品,用天平称至少称几次一定能找到次品?让学生运用本节课的知识实现思维的跨越,并从中发现规律,如果待测物品个数×3,那么找次品称的次数会加1。课堂上学生们积极举手发言,交流想法。通过观察、猜测、实验操作、画图、推理与合作交流等学习方法,使学生的思维逐步提高,进行优化思维的渗透。
本节课所研究的待测物品个数都比较特殊,都是3的倍数,刚好可以平均分成3份,我准备第二课时再研究其他普通的一些数如8个、10个等。
“学然后知不足,教然后知困”。面对新的教学内容,我们习惯性的反应就是“难”,可经过这次磨练,我才发现不是教材难,而是自己太“懒”,不愿意去学习,不愿意去思索,其实方法总比困难多。有效的课堂需要精心的预设,有效的.课堂需要不断反思。
找次品教学反思不足与改进 篇13
一、尽量体现教材意图。
《找次品》是新课标人教版教材五年级下册数学广角中的内容,优化时一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、实验来体会解决问题的多样性,在此基础上,通过推理的方法运用优化解决问题的有效性。
二、尽量体现“数学味”。
数学味或者说数学化是现在数学课堂提倡的理念,是我们所追求的。那么,怎样体现出数学味呢?怎样运用数学的眼光观察与认识生活中常见的数学问题呢?教师在本节课作了一些努力,例如:出示5件物品,找出其中的一件次品。让学生经历多次观察、比较、分析,在师生之间的交流和互动中,加强横向与纵向数学化的过程,使学生能从找次品的具体实例中初步了解蕴含其中的一些简单信息。
三、尽量体现方法渗透。
本节课中教者还力图渗透一些基本的学习方法,观察、比较、分析、猜测等方法贯穿整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次。
找次品教学反思不足与改进 篇14
《找次品》是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培养学生的应用意识和解决实际问题的能力。
传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作 ----猜测----验证 ---- 归纳 ----应用的教学思路,它的重点放在学生优化方案的比较上。这样设计有两个弊端。问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。
1、巧:游戏互动做铺垫--巧妙渗透优化思想
在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。
2、趣:交流策略多样化---引出优化方法
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。
3、实:打破常规设悬念---激起优化需求
如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。
4、准:找准盲区巧点拨---形成优化策略
学生挑战在100个中找次品时,高老师及时点拨引导---------当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。
启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。
启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:
1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。
2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。
思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?
古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。
找次品教学反思不足与改进 篇15
《找次品》教学反思《找次品》一课是以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。在教学中,我主要力求体现以下三个方面的教学设计意图。1.从简单问题入手,理解找次品的含义,并用直观方式清晰地表达推理过程。
学生在本单元学习之前很少接触“找次品”问题,没有相关的学习与生活经验。而教材中的“次品”与日常生活中提到的“次品”有所不同:它指从外表看完全相同的零件,其中重一些或轻一些的那一个就是“次品”。首先,让学生认真读题,充分理解题意,理解“找次品”的意思,了解“正品”“次品”的含义,丰富生活经验。3个零件中有1个较重的次品,任意取2个放在天平两端,天平有可能是平衡的,也有可能是不平衡的。非常重要的一点,这里所指的天平并不是一架实物天平,而是利用天平平衡原理抽象出的数学化形式的天平,借助它进行逻辑推理。说理时,引导学生尽量用规范的语言“如果天平平衡……如果天平不平衡……”来表述。在此基础上,让学生把推导的过程用直观图或流程图辅以文字说明来记录和推导,这一点尤其重要。2.充分经历“比较——猜测——验证”的探究过程,理解找次品的最优策略“至少称几次能保证找出次品”是理解的难点,这里要让学生理解“能保证”是指每一种可能的情况都要考虑,“至少”就是指在保证一定能找出次品的各种方法中称量次数最少的那种方案。“找次品”的最优策略有两个要点:一是把待测物品分成三份,二是尽量平均分。教学时从“8个”的情形开始,通过小组合作的方式,让学生将推理过程用直观图清晰、简洁地表示出来,然后将找次品的不同方案记录下来。从8个零件中找次品,学生会很自然地想到平均分成两份(4,4),但会发现运用这种分组方法称的次数不是最少的,分成3份(3,3,2)的方法才能使称的次数最少。使学生体会到只有将次品确定在更小的范围内,称的次数才会越少。有了在8个零件中找次品的经验,接下来处理在9个零件中找次品的问题时,受天平平衡原理的暗示,学生会自然想到(4,4,1)和(3,3,3)的分法。把两种方案进行对比,感受到分成三份的情况中,平均分的方法称的次数最少。如果不能平均分呢?再去研究在8个零件中找次品的最少次数,会发现尽可能平均分可以使称的次数最少。最后层层递进,逐渐感知理解找次品的最优策略。3.关注个体差异,注重“说”的训练,初步感受“化归”思想通过练习进一步理解巩固找次品的问题,在练习中要对学生进行分层要求。在找次品的过程中,允许学生借助直观学具推理、用直观图或流程图直接推理、用口头叙述。让学生多“说过程”,通过说体会到“尽可能将待测物品平均分成三份”的最优策略,培养逻辑思维推理能力。有了例题的学习经验,学生在练习时就可以直接利用前面已有的结论。如“做一做”中将28瓶盐水分成三份(9,9,10),称一次后就转化为“从9个或10个物品中找次品”的已学知识。
找次品教学反思不足与改进 篇16
《找次品》教学后记本单元的数学与生活中有一节内容是“找次品”,仔细研究教材,有些无从下手的感觉。在教研活动时,与老师们交流、商议,确定低起点、小跨度、多操作、重发现,在教学中重在引导学生在探索中发现。课后回顾教学过程,本节课做到了自主探索、注重数学化,因此学生理解较好,兴趣也较浓。
首先注重学生的自主探索。其实要想快捷准确地解决此类型问题,作为教师的我们可以用五分钟左右的时间向学生灌输结论性的解题方法:即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。但这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养。为了让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。首先我安排了从2~8个零件中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作交流的学习方式。并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现把零件分成3份称的'方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
其次重视“数学化”。学生理解了找次品的方法,但是用语言描述找次品过程,叙述起来就十分麻烦,尤其是需要需要多次称时。教材中是采用绘制简单天平示意图的方式表示找的过程。可是随着物品个数的增加,这种方式虽然形象直观,但毕竟不方便。于是,我让学生想一想:有没有更加简单的记录方式?孩子们经过探讨,想到了不同的方式:用简单文字加箭头的方式,用树形图,就像原来学习的数的组成一样,每称一次,接着向下画一次。这种树形图吸收了箭头示意图的优点,使图示更具有数学味,也更简洁既准确、又形象。
找次品教学反思不足与改进 篇17
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”我这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。在本课的教学中有这样几点做得比较好:
教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从5个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了8个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了9个找出次品,这次提高难度要通过写一写的方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的`问题。这过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。让学生经历探索数学知识的过程。围绕问题的解决,让学生经历探索数学的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受数学思想方法,提高他们的数学思维能力和解决问题的能力。
本节课的活动性和操作性比较强,沈佳老师让学生借助圆片,以动手操作为手段,以思维训练为目的,把5个零件和8个零件作为学生研究的起点,放手让学生操作探索,让学生通过操作、思考、讨论、交流去获得数学知识,使学生得到主动发展。
虽然本课从整体上来看还是比较成功的,达成了预设的教学目标,但是有些细节问题还是应该注意的。如:对于孩子们发言的点评还应该再有一些针对性;时间的控制再合理些,如在5个中找次品的时间再压缩一些为8和9再节省出一些时间会更好。让课堂时间分配更加合理。
找次品教学反思不足与改进 篇18
《找次品》是人教版小学数学五年级下册第七单元《数学广角》的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。上这样一课,是对自己的一次挑战。备课初衷我认为这一课,是在学习新课标后:从“双基”到“四基”,从“两能”到“四能”,我的新理念能得到充分的应用的一课。对基本思想的认识,这里的思想方法,不是前几年的教学实验“数学思想方法”这里指的是支撑数学科学发展的思想,核心在于数学推理、数学建模。如何让学生获得数学思想,关键要让学生经历概念的抽象过程。而《找次品》一课恰恰能把这一理念应用得淋漓尽致。
正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中我们要重视猜想、验证思想方法的渗透,以增强学生主动探索,获取数学知识的能力,促进学生创新能力的`发展。本节课我就让学生经历了“探究—猜想—验证—推理—归纳”的过程。从3瓶探究中建立找次品的基本模型,然后通过自主探究获得8、9瓶称的次数最少的方案,进而猜测最简方法,为了验证这一猜想,就必须再用一个例子去试验,然后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。
新课标指出:推理能力的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理包括合情推理和演绎推理在本节课教学中两者都有具体体现。在学生独立探究、观察后发现,在找次品次数最少的这些方案中都把待测物品分成3份,于是得出结论,要使找次品次数最少,就要将待测物品分成3份。这一过程属于合情推理。而在对总结的结论用8瓶和9瓶进行小组验证这一环节中,又恰恰运用了演绎推理。两种推理功能不同,却相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。学生在尝试总结运用找次品最优策略的过程中发展了推理能力。
对学生而言,所谓数学的基本活动经验是指:围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。基本活动经验是学生的亲身经历。让学生获得基本活动经验,本质上让学生经历数学活动直观,但必须建立在学生亲身经历和感知的基础之上。本节课中我首先让学生独立动手实践、集体探究等。但由于时间关系,学生活动及讨论的时间偏少,但我和学生的心情一样愉快,因为学生有了探索的欲望和一定的解决问题的能力,这也是我最大的收获。
这节课也存在不足,由于是40分钟课,组织学生动手操作与合作交流不够充分:如果是60分钟课,在独立探究和小组验证活动中我会增加2—3分钟以便学生充分感知寻找最优策略的必要性;并且在独立研究后我会用4—6分钟,让学生逐一说明10个小球、11个小球找到次品的方法,这样以学带教,从而实现“教师为了不教”的教学境界,达到促进学生自主学习的根本目标。
总之,这次活动给我了一次很好的锻炼、成长的机会,使我找到了自身努力地方向!我深信,只要我们摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长铺垫出一条坚实之路!