首页 > 工作范文 > 范文大全 >

2024年六年级教案数学教案【热选5篇】

网友发表时间 2201623

【导读预览】此篇优秀范文“2024年六年级教案数学教案【热选5篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!

六年级教案数学教案【第一篇】

教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。

教学重点:分数乘整数的意义

教学难点:分数乘整数的计算法则:如何先约分再乘

教学过程:

一、复习。

1、5个12是多少?

用加法算:12+12+12+12+12

用乘法算:125

问:125算式的意义是什么?被乘数和乘数各表示什么?

2、计算:

问:有什么特点?应该怎样计算?

3、小结:

(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。

(2)同分母分数加法计算法则是分子相加作分子,分母不变。

二、新授

教学例1。

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:(块)

用乘法算:(块)

问:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

六年级教案数学教案【第二篇】

1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2。初步学会用负数表示一些日常生活中的实际问题。

3。能借助数轴初步理解正数、0和负数之间的关系。

重点难点

负数的意义和数轴的意义及画法。

教学指导

1。通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2。把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3。培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

课时安排

共分3课时

教学内容

负数的初步认识

(1)(教材第2页例1)。

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

重点难点体会负数的重要性。

教学准备多媒体课件。

情景导入

1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

3。引出课题并板书:负数的初步认识

(1) 新课讲授教学教材第2页例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

课堂作业

完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

答案:—18℃温度低。

课堂小结

通过这节课的学习,你有什么收获

课后作业

完成练习册中本课时的练习。

六年级教案数学教案【第三篇】

教科书第55页例2,课堂活动第2题,练习十五第4~7题。

1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

重点:把两个数比的问题的解题方法推广到三个数连比的问题。

难点:理解三个数连比的问题的解题方法。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

导入新课

1.填空。(多媒体出示题目)

(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

学生回答反馈,说说怎样思考,集体评价。

2.引入谈话:怎样解决按比例分配的问题?

在实际生活中还有哪些问题可以用按比例分配的'方法解决?生举例。(组织学生分组讨论.

反馈.

交流后,老师及时做出评价)

在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

独立思考再交流方法和结果,集体评价。

举例,分组讨论、反馈、交流。

1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?

生1:前面所做的题都是两个量的比,这道题是三个量的比。

生2:可以仿照上节所学的按比例分配方法去解。

3.学生尝试解答,教师巡视。

4.展示学生解法,说出解题思路。

方法1:220÷(2+3+6)=20(吨)

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

答:需要水泥40吨,需要沙子60吨,需要石子120吨。

方法2:总份数:2+3+6=11

需要水泥的吨数:220x2/11=40(吨)

需要沙子的吨数:220x3/11=60(吨)

需要石子的吨数:220×6/11=120(吨)

方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

解:设每份是x吨.

2x+3x+6x=220

11x=220

x=20

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

5.议一议:怎样解决按比例分配的问题?

学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

学生交流获取的信息。

讨论交流异同。

尝试解答,再展示交流解题思路。

独立思考,再小组交流、小结解决按比例分配问题的一般方法。

在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

在按比例分配的过程中,感受分配方案的简洁美、理性美。

1.课堂活动第2题。

根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

教师组织学生讨论:这道题与前面所做的题有什么区别?

引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

学生讨论后尝试独立解题。完成后交流解决问题的方法。

再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

学生讨论找到方法。

独立解题,再交流解题方法。

讨论交流得出结论。

经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

想一想,今天学习的知识与昨天有什么不同?又有什么相同?

谈收获。

练习十五第4―7题。

独立完成。

六年级教案数学教案【第四篇】

(2)30人与42人比较,少了几人?为什么会少12人呢?

(3)有一只大船被当成小船会少出几人?

(4)一共少12人,说明有几只大船被当成小船?

(5)列式计算。

5、小组汇报(二):假设大船与小船都是5只。

要求学生汇报后,全班共同填教科书191页表格,并解决问题。

三、巩固反思,提升策略。

练一练

1、学生先读题,独立完成并汇报。如果假都是兔,你能设计这样的四个问题吗?小组讨论完成,并汇报。

读题理解题意。提问:要算到怎样才能够解决问题?

2、学生独立完成,并汇报。

四、全课总结:

教学目标:

1、使学生在解决实际问题的过程中进一步学会运用替换和假设的策略分析数量关系、确定解题思路,并有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问的成功体验,提高学好数学的信心。

教学重、难点:

1、教学重点:用“替换”和“假设”的策略解决实际问题。

2、教学难点:选择合理的策略有效的解决问题。

教学过程

一、策略回忆

提问:前两节课,我们学习了什么内容?你在解决这些问题的时个有什么诀窍,或说关键是什么?可以讨论一下再回答。

二、巩固提升

练习十七第2题。

1、读题:

2、你准备用什么策略来解决这个问题?

3、准备怎样替换?关键是什么?

4、学生独立完成并检验。

练习十七第3题:

1、读题

2、你准备用什么策略来解决这个问题?

3、准备怎样假设?关键是什么?

4、学生独立完成并检验。

练习十七第4题:

学生独立完成。完成后同桌说说解题的想法?鼓励学生用不同方法解答。

三、你知道吗?

一起读一读,你能理解题意吗?你会解答吗?

六年级教案数学教案【第五篇】

教学内容:

教学目标:

1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

使学生掌握用“替换”的策略解决一些简单问题的方法。

教学难点:

使学生能感受到“替换”策略对于解决特定问题的价值。

教学过程:

一、复习导入。

1.说说图中两个量的关系可以怎样表示?

追问:还可以怎么说?

指出:两个量的关系,换一个角度,还可以有另外一种表示方法。

2.从图中你可以知道些什么?

(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)

指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。

3.口答准备题:

(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。

二、新授

(一)教学例1

1.读题

2.分析探索

提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。

3.交流

谈话:我们一起来交流一下,该怎么办?

追问:还可以怎么办?

小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)

4.列式计算

a:把大杯换成小杯

提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?

追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)

小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。

b:把小杯换成大杯

谈话:那反过来,把小杯换成大杯呢?(板书)

提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?

指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。

提问:这样做的依据又是什么?

指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)

提问:能求出每个大杯的容量吗?每个小杯呢?(板书)

5.检验

谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?

指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。

6.小结

指出:解这题的关键就是把两种杯子看成一种杯子。

(二)练习十七第1题

谈话:把这道题目,做在自己的草稿本上。(指名板演)

提问:把你的做法讲给同学们听。

追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!

(三)教学“练一练”

1.出示题目

谈话:自己先在下面读一遍题目。

2.分析比较

提问:这题与刚才的例1相比较有何不同之处?

指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。

提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。

3.学生试做

4.评讲

谈话:说说你是怎么做的?

指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。

提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。

指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。

谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。

5.检验

谈话:同桌相互检验一下刚才计算的结果是否正确。

6.小结

提问:解这题时你觉得哪一步是关键?

指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。

三、全课总结

谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)

提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。

追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。

四、巩固练习

3.练习十七2(机动)

――替换

把两种物体看成同一种物体

1.把大杯替换成小杯共需要9个小杯

720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)

80×3=240(毫升)240÷80=3(倍)

2.把小杯替换成大杯共需要3个大杯

720÷(1+2)=240(毫升)

240÷3=80(毫升)

课后反思:

由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。

一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。

二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。

不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。

相关推荐

热门文档

48 2201623