首页 > 工作范文 > 范文大全 >

高考数学知识点全解析【实用5篇】

网友发表时间 2672244

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“高考数学知识点全解析【实用5篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

高考数学知识点全解析【第一篇】

对知识点的要求略有降低。

解析:对数学知识的要求分为三个层次,即了解、理解;掌握、灵活;综合运用。其中对第三层次的要求占比重相当小,仅出现以下几处:“掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用”、“能根据条件熟练地求出直线方程”、“熟记导数的基本公式”(但实际高考命题中,属第三层次的要求远不止这些)。

重点强调对数学基础知识、基本思想及方法的考查。

解析:在复习与冲刺时,不要忽略“三基”训练,但也不要盲目加大试题的难度。

强调对数学基础知识的考查,还“要求既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。”

解析:不难发现,函数、导数、不等式、三角函数、向量、概率与统计、数列、直线与平面、直线与圆锥曲线等是支撑数学学科知识体系的重点内容。在复习中要以三角与向量,直线平面简单几何体,概率统计,数列与极限,直线与圆及圆锥曲线,函数导数与不等式等六大部分为知识模块,在此开展专题复习,注意模块内与模块间的交汇综合。

强调“对新信息、情景、设问,选择有效的方法和手段分析问题,并能灵活地应用所学数学知识、思想、方法独立地解决问题”。

解析:近几年数学辽宁试卷中,多次出现像新定义、新背景等方面的创新试题,今年高考是辽宁省课改前的最后一年,为实现现有高考向课改高考平稳过渡,估计今年在创新问题上要加大考查力度。

高考数学知识点全解析【第二篇】

两个矩阵的特征值相等的时候不一定相似,但当这两个矩阵是实对称矩阵时,有相同的特征值必相似。比如当矩阵a与b的特征值相同,a可对角化,但b不可以对角化时,a和b就不相似。当这两个矩阵都是实对称矩阵时,都一定可以对角化,于是有相同的特征值就一定相似。

在线性代数中,相似矩阵是指存在相似关系的矩阵。设a,b为n阶矩阵,如果有n阶可逆矩阵p存在,使得p^(-1)ap=b,则称矩阵a与b相似,记为a~b。

判断两个矩阵是否相似的辅助方法:

(1)判断特征值是否相等;。

(2)判断行列式是否相等;。

(3)判断迹是否相等;。

(4)判断秩是否相等。

以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。

两个矩阵若相似于同一对角矩阵,这两个矩阵相似。

高考数学知识点全解析【第三篇】

概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。

众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:

(1)、确定性:集合中的元素应该是确定的,不能模棱两可。

(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。

(3)、无序性:集合中的元素是无次序关系的。

集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。

布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭 集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。

空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视。

高考数学知识点全解析【第四篇】

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;。

(2)偶次被开放式非负;。

(3)真数大于0;。

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

易错点:带有绝对值的函数单调性判断错误。

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

易错点:求函数奇偶性的常见错误。

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

高考数学知识点全解析【第五篇】

则有以下五种关系:

1、dr+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。

2、d=r+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

3、d=r—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

4、d。

5、d。

1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。

2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

相关推荐

热门文档

48 2672244