首页 > 公文资料 > 其它公文 >

初中数学教案人教版教学设计(8篇)

网友发表时间 2331953

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“初中数学教案人教版教学设计(8篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

初中数学教案人教版教学设计【第一篇】

这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

知识与技能。

探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用。

过程与方法。

(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

四、教学重点难点。

教学重点。

探索和证明勾股定理。

教学难点。

用拼图的方法证明勾股定理。

五、教学方法。

(学法)“引导探索法”

(自主探究,合作学习,采用小组合作的方法。

六、教具准备。

课件、三角板。

教学环节1。

教学过程:创设情境探索新知。

教师活动:出示第24届国际数学家大会的会徽的图案向学生提问。

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:

学生思考回答。

设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

教学环节。

教学过程:

实验操作获取新知归纳验证完善新知。

教师活动:出示课件,引导学生探索。

学生活动:猜想实验合作交流画图测量拼图验证。

教师活动:出示例题和练习。

学生活动:交流合作,解决问题。

教学环节4。

教学内容:

课堂小结。

巩固新知布置作业。

教师活动:引导学生小结。

学生活动:讨论交流、自由发言。

八、板书设计。

勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么a2+b2=c2。

九、习题拓展。

如图,将长为10米的梯子ac斜靠在墙上,bc长为6米。(1)求梯子上端a到墙的底端b的距离ab。

(2)若梯子下部c向后移动2米到c1点,那么梯子上部a向下移动了多少米?

十、作业设计。

1、收集有关勾股定理的证明方法,下节课展示、交流.。

2、做一棵奇妙的勾股树(选做)。

初中数学教案人教版教学设计【第二篇】

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.

教学重难点。

掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.

教学过程。

示范举例。

例1:数列是首项为23,公差为整数,

且前6项为正,从第7项开始为负的等差数列。

(1)求此数列的公差d;。

(2)设前n项和为sn,求sn的值;。

(3)当sn为正数时,求n的值.

初中数学教案人教版教学设计【第三篇】

2、使学生分清常量与变量,并能确定自变量的取值范围。

3、会求函数值,并体会自变量与函数值间的对应关系。

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。

5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。

教学重点:了解函数的意义,会求自变量的取值范围及求函数值。

教学难点:函数概念的抽象性。

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。

解:1、y=30n。

y是函数,n是自变量。

2、n是函数,a是自变量。

(二)讲授新课。

刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。

例1、求下列函数中自变量x的取值范围。

(1)(2)。

(3)(4)。

(5)(6)。

分析:在(1)、(2)中,x取任意实数,与都有意义。

(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求。

同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且。

第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零。的被开方数是。

同理,第(6)小题也是二次根式,是被开方数,小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。

但象第(4)小题,有些同学会犯这样的错误,将答案写成或。在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里与是并且的关系。即2与-1这两个值x都不能取。

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次元,一般车保管费是每次一辆元。

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。

解:(1)。

(x是正整数,

总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。

对于函数,当自变量时,相应的函数y的值是。60叫做这个函数当时的函数值。

例3、求下列函数当时的函数值:

(1)————(2)—————。

(3)————(4)——————。

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应。以此加深对函数的理解。

(二)小结:

这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。

作业:习题组2、3、5。

今天的内容就介绍到这里了。

初中数学教案人教版教学设计【第四篇】

设计思想:

溶解度是第七章教学的重点和难点。传统教学模式把溶解度概念强加给学生,学生对概念的理解并不深刻。本节课从比较两种盐的溶解性大小入手,引发并活跃学生思维,设计出合理方案,使其主动地发现制约溶解度的三个条件,然后在教师引导下展开讨论,加深对“条件”的认识。这样设计,使以往学生被动的接受转化为主动的探索,充分调动了学生善于发现问题,勇于解决问题的积极性,体现了尝试教学的基本观点:学生在教师指导下尝试,并尝试成功。

教学目标:

1、理解溶解度概念。

2、了解温度对溶解度的影响。

3、了解溶解度曲线的意义。

教学器材:胶片、幻灯机。

一、复习引入。

问:不同物质在水中溶解能力是否相同?举例说明。

答:不同。例如食盐能溶于水,而沙子却极难溶于水。

问:那么,同种物质在不同溶剂中溶解能力是否相同?

答:不同。例如油易溶于汽油而难溶于水。

教师总结:

物质溶解能力不仅与溶质有关,也与溶剂性质有关。通常我们将一种物质在另一种物质中的溶解能力叫溶解性。

二、讲授新课。

1、理解固体溶解度的概念。

问:如何比较氯化钠、硝酸钾的溶解性大小?

生:分组讨论5分钟左右,拿出实验方案。

(说明:放给学生充足的讨论时间,并鼓励他们畅所欲言,相互纠错与补充,教师再给予适时的提示与总结。学生或许会凭感性拿出较完整的实验方案,意识到要比较氯化钠、硝酸钾溶解性大小,即比较在等量水中溶解的氯化钠、硝酸钾的多少。但此时大多数学生对水温相同,溶液达到饱和状态这两个前提条件认识不深刻,教师可引导进入下一次尝试活动。)。

问:

(1)为什么要求水温相同?用一杯冷水和一杯热水分别溶解氯化钠和硝酸钾,行不行?

(2)为什么要求水的体积相同?用一杯水和一盆水分别溶解,行不行?

(3)为什么要达到饱和状态?100克水能溶解1克氯化钠也能溶解1克硝酸钾,能否说明氯化钠、硝酸钾的溶解性相同?生:对上述问题展开积极讨论并发言,更深入的理解三个前提条件。

(说明:一系列讨论题的设置,充分调动了学生思维,在热烈的讨论和积极思考中,"定温,溶剂量一定,达到饱和状?这三个比较物质溶解性大小的前提条件,在他们脑海中留下根深蒂固的印象,比强行灌输效果好得多。)。

师:利用胶片展示完整方案。

结论:1、10℃时,氯化钠比硝酸钾更易溶于水。

师:若把溶剂的量规定为100克,则某温度下100克溶剂中最多溶解的溶质的质量叫做这种溶质在这个温度下的溶解度。

生:理解溶解度的涵义,并思考从上述实验中还可得到什么结论?

结论:2、10℃时,氯化钠的溶解度是35克,硝酸钾的溶解度是21克。

生:归纳溶解度定义,并理解其涵义。

2、根据溶解度判断物质溶解性。

师:在不同的温度下,物质溶解度不同。这样,我们只需比较特定温度下物质溶解度大。生:自学课本第135页第二段并总结。

3、溶解度曲线。

师:用胶片展示固体溶解度曲线。

生:观察溶解度曲线,找出10℃时硝酸钠的溶解度及在哪个温度下,硝酸钾溶解度为110克。

问:影响固体溶解度的主要因素是什么?表现在哪些方面?

答:温度。大多数固体溶解度随温度升高而增大,例如硝酸钠;少数固体溶解度受温度影响不大,例如氯化钠;极少数固体随温度升高溶解度反而减小,例如氢氧化钙。

一、说教材。

《物质的溶解性》是鲁教版初中化学九年级全一册第1单元第3节的内容。本节课主在前两节的基础上,定量研究溶质在一定量水中溶解的限度。本节包括溶解度和溶解度曲线两个方面的内容。在“溶解度”部分介绍了物质的溶解度与溶剂和温度的关系说明了物质在一定溶剂和温度下溶解量是有一定限度的,并以此得出了固体溶解度的概念。然后,探究溶解度曲线——包括回执溶解度曲线、分析和应用溶解度曲线、比较溶解度数据表和溶解度曲线的区别、体会列表法和作图法两种数据处理方法的不同作用等,引导学生体检数据处理的过程,学习数据处理的方法。最后,简单了解气体的溶解度、并结合有关汽水的讨论,说明气体的溶解度与压强和温度密切相关。

过渡:这是对教材的认识,下面说一下本班学生的情况。

二、说学情。

基于溶液在化学(科学)研究和生产、生活中有着广泛的应用,学生只定性地了解溶液的组成和基本特征是不够的,还应定量地认识溶液。本节以溶解度为核心,展开对溶液的定量研究。从定性研究到定量研究,知识内容上加深了,研究方法上要求提高了,对学生的能力要求提升了一个层次。在本节学习中所需的有关直角坐标系中曲线等数学知识,学习已经具备,一般不会造成学习障碍。学生可能会遇到的问题是:对溶解度概念的运用时忽略条件;对问题缺乏科学全面的分析而产生一些模糊或者错误的认识,例如认为饱和溶液一定是浓溶液,认为增加(或减少)溶剂的量,固态物质的溶解度也会随之增大(或减少);认为搅拌能使固态物质的溶解加快,也会使其溶解度增大;等等。

过渡:结合教材分析和学情分析,我制定了如下教学目标:

三、说教学目标。

初中数学教案人教版教学设计【第五篇】

教学目标:

1、使学生认识圆,知道圆各部分的名称。

2、掌握圆的特征及同一圆内半径与直径的关系。

3、会用圆规按指定的要求画圆。

4、通过观察、操作、讨论,培养学生的探索能力。

教学重点:圆的特征及半径与直径和关系。

教学难点:圆的特征。

教学具准备:

学具:大小不同的圆片各2个,直尺、圆规。

教具:圆形纸片,圆规,实物投影仪,自制多媒体课件。

教学过程:

一、课堂启发,自选学标(感动是学习的动力)。

利用多媒体展现各种不同形状的平面图形并提问:

1、找出你认为最与众不同的图形,为什么?你最想学哪种图形?

2、板书课题:圆的认识。

3、揭示学标:你最想学习圆的什么知识?(认识圆、掌握圆的特征、会画圆)。

二、预习思考,实践操作(感觉是学习的入门,知识来源于生活)。

对比思考:我们以前学习的长方形、正方形、三角形、梯形等都是平面图形。这节课我们要学习的圆也是一种平面图形,它和我们以前学的平面图形有不同之处,你们发现了吗?(长方形、正方形、三角形、梯形等都是由线段围成,而圆是由曲线围成的平面图形)。

体验圆的形成:你认为用什么方法可以得到一个圆?你认为哪种方法好?你会画圆吗?用你最喜欢的方法画出来吧!

1、学生操作:用自己喜欢的方法画任意一个圆(不限定用圆规)。

(学生画出的可能有些不是圆)。

2、圆规画圆。

教师:请大家拿出手中的圆规,认真观察一下圆规的样子,并用它尝试画一个标准的圆。(学生初次画圆)。

教师:请你介绍一下你用的是什么工具,是怎么画圆的?

3、讨论:画圆的步骤是分哪几步?

教师在黑板是演示怎用圆规正确地画一个圆,作教学使用。

4、小结:(1)画圆的步骤是:一是定好两脚的距离;二是固定一点;三是旋转一周。

设悬:学会了画圆,你想不想进一步了解圆?圆的大小跟什么有关,圆的位置跟什么有关?(为下面学习圆的特征做铺垫。)。

三、问题讨论,认识圆心(感知是学习的基础)。

1、举例说说日常生活中哪些物体的形状是圆形的?

2、动手操作:(1)你手中的圆片是怎样得来的?

(2)对折打开,连续3次。还可以折下去吗?

3、观察讨论:折过若干次后你发现了什么?

4、归纳小结:这些折痕都相交于一点,正好在圆的正中心,我们把圆中心的一点叫作圆心,用字母“o”来表示。画圆时,圆心在哪里,圆就画在哪里,所以圆心决定圆的位置。

5、验证内化:在你手中的圆片上标出圆心,并用字母表示。

四、教材分析、探索特征(感悟是学习的升华)。

过渡导入:学习了圆心,那么同学们能不能自学其它有关圆的(知识?(小组合作自学)。

1、认识圆的半径。

教师:刚才同学们画的圆都比较好,现在大家拿出直尺画出从圆心到圆上的任意一点的线段并量一下它们的距离看看你们发现了什么?这样的线段你能画多少条出来?(这些线段的长度都相等;画不完,这样的线段有无数条。)。

提问:你是怎样观察得出在一个圆内这样的线段有无数条的?(因为围成圆的曲线是由无数个点组成的连接圆心到圆上任意一点的线段有无数条)。

教师:连接圆心到圆上任意一点的线段有无数条,这样的线段我们把它叫做半径(齐读:连接圆心和圆上任意一点的线段叫做圆的半径。)半径一般用字母r表示。

由于圆周上有无数个点,所以半径就有无数条。

说明半径的特征并板书:在同一圆内,半径有无数条,并且长度都相等。

2、认识圆的直径。

(1)除了半径以外,在圆中还有没有像这样比较特殊的线段能决定圆的大校学生讨论后回答(直径)。

教师:请学生同学们动手画一画直径。画得越多越好。画时要注意什么?(过圆心,两端在圆上)齐读:通过圆心且两端都在圆上的线段叫圆的直径。直径一般用字母d表示。

(2)让学生观察自己画的直径,找出直径的特征。

(3)直径的特征。学生动手操作量一量数一数在同一圆内,直径的长度有什么特点,直径能不能画完?为什么?说明理由。(引出半径和直径的关系,动手验证。或直尺量,或用圆纸片对折)。

3、半径和直径的关系。

师生讨论:

(1)把你学到的知识告诉老师与同学们?

(3)学习了这些特征,你知道圆的大小由什么决定了吗?(前后呼应)。

小结:在同圆或等圆里,[半径有无数条,直径也有无数条,所有的半径都相等,所有的直径也都相等;直径是半径的2倍,半径是直径的一半]。

4、操作内化:把刚才学到的知识在圆片上表示出来。

五、课堂练习,学以致用(感恩是学习的境界,知识又服务于生活)。

多媒体展示:

1、判断:

(1)两端都在圆上的线段叫作直径。--()。

(2)直径是半径的2倍,半径是直径的一半。---()。

(3)直径和半径都是直线。()。

(4)用两脚之间的距离是2厘米的圆规画出的圆,它半径是2厘米。()。

2、选择正确的半径、直径:bad。

3、讨论操作:ce。

(1):画几个圆心在同一点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。

初中数学教案人教版教学设计【第六篇】

1.知识与技能目标:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。

2.过程与方法目标:通过体验探索扇形统计图的特点和应用,发展学生推理能力,提升学生的抽象思维能力。

3.情感态度与价值观目标:在活动中体会数学的特点,了解数学的价值。

初中数学教案人教版教学设计【第七篇】

北京版初中生物课程标准中将生物的生殖和发育按照人、动物和植物分成了三部分。本节以讲解和比较昆虫的生殖和发育为主。教材中分别以家蚕和蝗虫为例,介绍了完全变态发育和不完全变态发育的概念和过程。课堂上让学生分析资料,对常见的其它昆虫的生长发育类型进行分类、总结。同时比较昆虫、两栖动物、人类和绿色开花植物的在生殖方面的共同点,课上通过启发、观察、比较、讨论、探究等形式,以更好地激发学生的兴趣,体验到生物学知识与多学科的密切。

二、教学目标分析。

(一)知识与能力目标。

1、举例说出昆虫的生殖和发育过程。

2、描述描述两栖动物的生殖和发育过程3、比较有性生殖和无性生殖。

(二)过程与方法目标。

1、观察昆虫的生殖发育过程,提高观察能力。

2、通过观察图片、视频等相关资料,培养学生收集、整理、分析信息的能力,锻炼学生的交流合作能力。

(三)情感态度价值观目标。

尝试在基于本学科基础上,与其他学科相结合。

三、教学重点。

能够举例说出昆虫生殖和发育过程及特点。

四、教学难点。

尝试运用所学,对常见昆虫的生殖发育进行分类;并尝试与多学科内容建立联系。

五、板书设计。

动物的生殖和发育。

有性生殖无性生殖。

七、课后小结。

初中数学教案人教版教学设计【第八篇】

课本第139页.

教学目标。

1.知识与技能。

会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.

2.过程与方法。

经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力.

3.情感态度与价值观。

经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用.

重、难点与关键。

1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角.

2.难点:用尺规画一个角等于已知角.

3.关键:引导学生积极参与画图的数学活动过程,才能熟练掌握画图步骤.

教具准备。

一副三角板、量角器、多媒体设备、投影仪.

教学过程。

一、引入新课。

1.投影一个五角星的图案,请学生观察图形.(如右图)。

相关推荐

热门文档

70 2331953