冀教版七年级数学教学设计(5篇)
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“冀教版七年级数学教学设计(5篇)”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
冀教版七年级数学教学设计【第一篇】
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
1.列二元一次方程组解简单问题。
2.彻底理解题意。
找等量关系列二元一次方程组。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
p42。习题组第1题。
后记:
二元一次方程组的应用(2)。
冀教版七年级数学教学设计【第二篇】
教学目标:。
1.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用正负数表示互为相反意义的量.
教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.
教学难点:负数的引入.
(一)创设情境,导入新课。
课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.
(二)合作交流,解读探究。
举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).
活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.
总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.
(三)应用迁移,巩固提高。
例1举出几对具有相反意义的量,并分别用正、负数表示.
提示具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.
例3某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()。
-3c.--。
点拨读懂题意是解决本题的关键.7:45与10:00相差135分钟.
(四)总结反思,拓展升华。
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.
1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):。
星期日一二三四五六。
(元)+16++。
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来相比是多了还是少了?
(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.
2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.
(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.
(五)课堂跟踪反馈。
夯实基础。
1.填空题:。
(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.
(2)如果4年后记作+4年,那么8年前记作年.
(3)如果运出货物7吨记作-7吨,那么+100吨表示.
(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.
2.中午12时,水位低于标准水位米,记作-米,下午1时,水位上涨了1米,下午5时,水位又上涨了米.
(1)用正数或负数记录下午1时和下午5时的水位;。
(2)下午5时的水位比中午12时水位高多少?
提升能力。
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.
(六)课时小结。
1.与以前相比,0的意义又多了哪些内容?
2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)。
冀教版七年级数学教学设计【第三篇】
能利用完全平方公式进行简单的运算。
在探索完全平方公式的过程中,发展学生的符号感和推理能力,体会数学语言的严谨与简洁。
培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。
重点难点
重点
完全平方公式的推导和运用
难点
完全平方公式的结构特点和灵活运用。
教学过程
1.说出平方差公式的内容及作用。
2.我们知道,当相乘的两个多项式有一项相同,另一项相反时,可以用平方差公式直接得到结果,大大简化了运算过程,那么当相乘的两个多项式两项都相同时,是不是也有一个公式来简化运算过程呢?这节课我们就来探索一个新的乘法公式:完全平方公式。
探究新知
计算下列各式,你能发现它们的结果有什么规律吗?
鼓励学生发表各自的看法,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,以此调动学生参与的热情。
综合学生的观察,得到:两数和的平方,等于它们的平方和,加上它们的积的两倍。
2.这个结论可以推广到任意两个数的计算上去吗?
我们可以利用多项式乘法法则来推导一下:(师生共同完成)
3.两数差的平方等于什么呢?请同学们计算。
学生一般会这样计算:
及时引导学生用语言叙述这个结果:
两数差的平方,等于它们的平方和,减去它们的积的两倍。
以上两个公式都叫做完全平方公式,它们之间有联系吗?启发学生把“-b”整个的看成一个数,用两数和的平方公式来计算,结果怎么样?结果发现两数差的平方可以用两数和的平方公式推导出来,也就是两数差的平方公式可以归属于两数和的平方公式。但为了使用方便,通常我们还是以两个公式来呈现。
完全平方公式:;
用语言叙述为:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍。
完全平方公式的理解
1.比较两数和、两数差的平方公式的异同。
学生讨论,发表各自的看法。
2.比较完全平方公式与平方差公式的不同之处。
学生发表看法后,教师特别指出完全平方公式计算的结果有三项,不要误以为是两项,比方;,是错误的。我们用图形的面积来加深一下对这个结果的理解:如图,显然整个正方形的面积由四部分组成。
例1运用完全平方公式计算:
(3);(4);
师生共同解答,教师板书。初学运用时要写清楚运用公式的步骤,熟记公式。
例2运用完全平方公式计算:
学生解答,进一步体会两个完全平方公式的异同。
1.下面各式的计算对不对?如果不对,应怎样改正?
2.运用完全平方公式计算:
(1);(2);(3);
3.运用完全平方公式计算:
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
p50第2(1)、(2),4题
冀教版七年级数学教学设计【第四篇】
1、单项式。
对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.
2、系数。
单项式中的数字因数叫做这个单项式的系数.
3、单项式的次数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、多项式。
几个单项式的和叫做多项式.
5、多项式的项。
在多项式中,每个单项式叫做多项式的项.
-6是常数项.
6、常数项。
多项式中,不含字母的项叫做常数项.
7、多项式的次数。
多项式里,次数最高的项的次数,就是这个多项式的次数.
8、降幂排列。
把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.
9、升幂排列。
把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.
10、整式。
单项式和多项式统称整式。
11、同类项。
所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.
12、合并同类项。
把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则是:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
13、去括号法则。
括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;。
括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
例:a+(b-2c)-(e-2d)=a+b-2c-e+2d。
14、添括号法则。
添括号后,括号前面是“+”号,括到括号里的各项都不变符号;。
添括号后,括号前面是“-”号,括到括号里的各项都改变符号.
例:m+2x-y+z-5=m+(2x-y)-(-z+5)。
15、整式的加减。
整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号;。
2.合并同类项.
16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.
冀教版七年级数学教学设计【第五篇】
知识与技能:
理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想.
过程与方法:
1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.
2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。
情感、态度与价值观:
结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。
教学重点。
确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.
教学难点。
确定相等关系并列出一元一次方程,正确地进行移项并解出方程。
教学过程。
一、情景引入:
二、自主学习:
1.解方程:
3x+20=4x-25。
观察上列一元一次方程,与上题的类型有什么区别?
3.新知学习请运用等式的性质解下列方程:
(1)4x-15=9;(2)2x=5x-21。
你有什么发现?
三、精讲点拨。
问题2你能说说由方程到方程的变形过程中有什么变化吗?
移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。
例1解下列方程:
解:移项,得3x+2x=32-7。
合并同类项,得5x=25。
系数化为1,得x=5。
移项时需要移哪些项?为什么?
针对训练:解下列方程:
(1)5x-7=2x-10;(2)-+3=9+
四、合作探究。
列方程解决问题。
思考:如何设未知数?
你能找到等量关系吗?
五、当堂巩固。
1.对方程7x=6+4x进行移项,得___________,合并同类项,得_________,系数化为1,得________.
2.小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁.求小新现在的年龄.
六、课堂小结。
1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。
2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。
3.列方程解实际问题的基本思路。
七、作业布置。
1.必做题:教科书第91页习题第3(3),(4),11题。
2.选做题:
八、板书设计。