首页 > 学习资料 > 作文大全 >

申论必考知识点(3篇)

网友发表时间 22865

发表时间

【阅读指引】阿拉文库网友为您分享整理的“申论必考知识点(3篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

申论必考知识点1

形如a+bi(a,b∈r)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母c表示。

复数通常用字母z表示,即z=a+bi(a,b∈r),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

(1)复平面、实轴、虚轴:

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

(1)它的平方等于-1,即i2=-1;

(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数与实数、虚数、纯虚数及0的关系:

对于复数a+bi(a、b∈r),当且仅当b=0时,复数a+bi(a、b∈r)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

申论必考知识点2

1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程

1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

高考数学必考知识点归纳必修四:

1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

高考数学必考知识点归纳必修五:

1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考数学必考知识点归纳文科选修:

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

选修1--2:

1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

高考数学必考知识点归纳理科选修:

申论必考知识点3

1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

最小的质数是2,最小的合数是4

1~20以内的质数有:2、3、5、7、11、13、17、19

6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。

7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。

8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。

11.互质数:公约数只有1的两个数叫做互质数。

12.两数之积等于最小公倍数和最大公约数的积。

相关推荐

热门文档