首页 > 学习资料 > 小学教案 >

小学六年级数学《圆的面积》教案【实用4篇】

网友发表时间 64553

发表时间

【序言】由阿拉题库最美丽的网友为您整理分享的“小学六年级数学《圆的面积》教案【实用4篇】”学习资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

《圆的面积》教学设计【第一篇】

目标预设:

1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。

教学过程:

一、引导估计,初步感知。

1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

2、估计圆面积大小与半径的关系。

师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

二、动手操作,共同探索。

1、引发转化,形成方案。

(1)我们如何推导三角形,平行四边形,梯形的面积公式的?

(2)准备如何去推导圆的面积?

2、动手操作,共同探究

(1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

(3)比较:与刚才老师拼成的图形有何不同?

(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

如果一直这样分下去,拼成的图形会怎么样?

3、引导比较,推导公式。

圆与拼成的长方形之间有何联系?

引导学生从长方形的面积,长宽三个角度去思考。

根据学生回答,相机板书。

长方形的面积=长×宽

↓↓↓

圆的面积=∏rr

=∏r2

追问:课始我们的估算正确吗?

求圆的面积一般需要知道什么条件?

三、应用公式,解决问题

1、基本训练,练练应用公式,求圆的面积。

2、解决问题

(1)出示例9,引导学生理解题意。

要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

(2)学生计算

(3)交流,突出5平方的计算

四、巩固练习

1、练习十九1求课始出示的光盘的面积

2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?

五、这节课你有什么收获?你认为重点的

地方有哪些?

引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

六、课堂作业

补充习题51页2、3、4题

拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

圆的面积是多少平方厘米?

反思:

1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

《圆的面积》教学设计【第二篇】

教学理念:

本课时是在学生掌握了直线图形的面积计算的基础上教学的,主要是对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,教材首先通过圆形草坪的实际情境提出圆面积的概念,使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”。

接着教材启发学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将多边行的面积转化成更熟悉和更简单的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的直线图形的面积来计算,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。教学时,还要让学生认识到转化是一种很重要的数学思想方法,在解决日常问题以及在科学研究中,人们常常就是把复杂转化为简单,未知转化为已知、抽象转化为具体等方式来处理的。

教学目标:

1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。

2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。

3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。

4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。

教学重点:

运用圆的面积计算公式解决实际问题。

教学难点:

理解把圆转化为长方形推导出计算公式的过程。

教学准备:

多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。

教学过程:

一、创设问题情境,激发学生学习兴趣。

1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。

2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示)

二、合作交流,探究新知。

1、出示圆:

(1)让学生说出圆周长的概念,并指出来。

(2)想一想:圆的面积指什么?让学生动手摸一摸。

(揭示:圆所占平面的大小叫做圆的面积。)

(3)对比圆的周长和面积,让学生感受他们的区别。

同时引出课题——圆的面积。

[设计意图:通过学生动手摸一摸,使学生能够大胆地概括圆的面积,为开展学生想象力提供了广阔的空间。另外,让学生比较圆的周长和面积,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。]

2、推导圆面积的计算公式。

(1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?

(2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?

[设计意图:通过提问,让学生对圆的面积公式的推导先进行预测,引导学生大胆寻找求圆面积的方法,激发学生的创作灵感,提高学生的求知欲望与探究兴趣。]

(3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?

②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?

[设计意图:给学生充分的时间动手操作,放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的。教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,让学生在合作交流中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。]

③当圆转化成近似长方形时,你们发现它们之间有什么联系?

课件演示:

师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份??又会是什么情形?

④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。

[设计意图:通过电脑课件演示,生动形象地展示了化圆为方,化曲为直的剪拼过程。使学生进一步明确拼成的长方形与圆之间的对应关系,有效地认识和理解圆转化成长方形的演变过程。]

(4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。

①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。

②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?

③学生讨论交流:长方形的'长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径,即b=r。教师板书如下:

(5)小结:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式就是。同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!

(6)学生打开书本P68补充圆面积的计算公式的推导过程。思考:计算圆的面积需要什么条件?

[设计意图:在推导过程中给学生创设讨论交流的学习机会,通过观看电脑课件的演示,引导式提问、试写推导过程等不同形式,来调动学生参与学习的积极性,发挥学生的主体作用,培养了学生操作、观察、分析、概括的能力。最后进行小结,巩固学生对圆面积计算公式的认识。另外通过提出问题,强调学生计算圆面积时需要的条件。]

三、实践运用,巩固知识。

1、已知圆的半径,求圆的面积。

判断对错:已知一个圆形花坛的半径是5米,它的面积是多少平方米?

=×5×2=(米)

(学生先独立思考,再汇报交流,共同修改。)

强调:半径的平方是指两个半径相乘。

2、已知圆的直径,求圆的面积。(教学例1)

①师:把第一题的“半径是5米”改成“直径是20米”,那么这个圆形花坛的面积又怎样算呢?(小组合作交流,探讨计算方法。)

②学生汇报计算方法,要强调首先算什么?

③打开书本P68补充例1。

3、已知圆的周长,求圆的面积。(书本P70练习十六第3题)

小刚量得一棵树干的周长是。这棵树干的横截面的面积是多少?

①引导提问:要求树干的横截面积,必须先求出树干的什么?你打算怎样求树干的半径呢?

②根据圆的周长公式,师生间推导出求半径的计算方法。

③学生独立完成,教师巡查给于适当的指导。另外请两位学生上台板演,共同订正,并且指出计算中容易出现错误的地方。

4、一个圆形溜冰场,半径30米。

(1)这个溜冰场的面积是多少平方米?

(2)沿着溜冰场的四周围上栏杆,栏杆长多少米?

提问:知道圆的半径用什么方法求圆的面积?第(2)个问题求栏杆的长度也就是求这个圆形溜冰场的什么?用什么方法求圆的周长?

[设计意图:学生已经推导出圆面积的计算公式,以上的四道题的作用是巩固圆面积计算公式的运用,使学生对圆面积的计算方法有更深刻的理解。在练习时,大胆放手让学生进行计算,同桌间合作探讨,经过学生多次尝试解答,使他们的观察力、动手操作能力、想象力都能够得到进一步的发展,从而促进了理论与实践相结合,培养了学生灵活运用所学知识解决实际问题的能力。其中第3题通过周长求面积的计算和第4题知道圆的半径求圆的面积和周长,让学生体会到圆的周长和面积有着紧密的联系和根本的区别,使新旧知识有更好的连接,并且让学生感受到几何图形计算的灵活性。]

四、总结评价,拓展延伸。

1、今天我们学了什么知识?一起闭上眼睛回忆我们整节课的学习过程,你有什么感受啊?在计算圆的面积时有什么地方值得注意的?

2、在生活中还有很多关于圆面积的知识,老师出一个题目给同学们课后进行思考:有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少?

小学数学《圆的面积》教案【第三篇】

教学目标

1、理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

2、能正确地计算圆柱的表面积。

3会解决简单的实际问题。

4、初步培养学生抽象的逻辑思维能力。

教学重点

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程

一、复习旧知。

1计算下面圆柱的侧面积。

(1)底面周长米,高米。

(2)底面直径4厘米,高10厘米。

(3)底面半径分米,高8分米。

2求出下面长方体、正方体的表面积。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二、新课导入。

1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

4教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三、新课教学。

1例2一个圆柱的高是分米,底面半径2分米,它的表面积是多少?(课件演示)

2学生尝试练习,教师巡回检查、指导。

3反馈评价:

(1)侧面积:2×2×=(平方分米)

(2)底面积:×2×2=(平方分米)

(3)表面积:+=(平方分米)

答:它的表面积是平方分米。

4学生质疑。

5教师强调答题过程的清楚完整和计算的正确。

6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四、反馈练习:试一试。

1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

2学生交流练习结果(注意计算结果的要求)。

3教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五、拓展练习

1教师发给学生教具,学生分组进行数据测量。

2学生自行计算所需的材料。

3计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六、巩固练习。

1计算下面图形的表面积(单位:厘米)(略)

2计算下面各圆柱的表面积。

(1)底面周长是厘米,高分米。

(2)底面半径米,高2米。

(3)底面直径10分米,高80厘米。

3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

小学数学《圆的面积》教案【第四篇】

教学目标

1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2、培养学生动手操作的能力,启发思维,开阔思路;

3、渗透初步的辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1、我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2、动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言。(在幻灯前边说边摆。)

①拼出长方形,学生叙述,老师板书:

②还能不能拼出其它图形?

学生可以拼出:

刚才,我们用不同思路都能推导出圆面积的公式是:S=r。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

例1 一个圆的半径是4厘米,它的面积是多少平方厘米?

S=r===(平方厘米)

答:它的面积是平方厘米。

想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

相关推荐

热门文档