首页 > 学习资料 > 教学设计 >

三角函数教学设计优秀4篇

网友发表时间 15437

发表时间

【阅读指引】阿拉文库网友为您分享整理的“三角函数教学设计优秀4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

角函数教学设计【第一篇】

一、案例实施背景

本节课是九年级解直角三角形讲完后的一节复习课

二、本章的课标要求:

1、通过实例锐角三角函数(sinA、cosA、tanA)

2、知道特殊角的三角函数值

3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角

4、能运用三角函数解决与直角三角形有关的简单实际问题

此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。

三、课时安排:

1课时

四、学情分析:

本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力。

因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识。进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力。

五、教学目标:

知识与技能目标

1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化。

2、通过复习培养学生总结归纳的能力和运用知识的能力。

过程与方法:

1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识。

2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用。

情感、态度、价值观

充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展。

六、重点难点:

1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系。

2.难点:知识的深化与运用。

七、教学过程:

知识回顾一:

(1) 在Rt△ABC中,C=90, AB=6,AC=3,则BC=_________,sinA=_________,

cosA=______,tanA=______, A=_______, B=________.

知识回顾二:

(2) 比较大小: sin50______sin70

cos50______cos70

tan50______tan70.

知识回顾三:

(3)若A为锐角,且cos(A+15)= ,则A=________.

本环节的设计意图:通过三个小题目回顾:

1、锐角三角函数的定义:

在Rt△ABC中,C=90

锐角A的正弦、余弦、和正切统称A的锐角三角函数。

2、直角三角形的边角关系:

(1)三边之间的关系: .

(2)锐角之间的关系:B=90

(3)边角之间的关系:

sinA= cosA= tanA= sinB= cosB= tanB=

3、解直角三角形:

由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。

4、特殊角的三角函数值

三角函数

锐角A

sin A

cos A

tan A

30

45

60

5、锐角三角函数值的变化:

(1)当A为锐角时,各三角函数值均为正数, 且0

(2)当A为锐角时,sinA、tanA随角度的增大而增大,cosA随角度的增大而减小。

例题解析

例1在⊿ABC中,AD是BC边上的高,E是AC的中点,BC=14,AD=12,sinB=,求DC及tanCDE。

解题反思:通过本题让学生明白:

1、必须在直角三角形中求锐角的三角函数;

2、等角代换间接求解。

例2要在宽为28m的海堤公路的路边安装路灯,路灯的灯臂AD长3m,且与灯柱CD成120角,路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直,当灯罩的轴线通过公路路面的中线时,照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?

解题反思:通过本题让学生知道解决这类问题时常分为以下几个步骤:

①理清题目所给信息条件和需要解决的问题;

②通过画图进行分析,将实际问题转化为数学问题;

③根据直角三角形的边角关系寻找解决问题的方法;

④正确进行计算,写出答案。

例3一艘轮船以每小时30海里的速度向东北方向航行,当轮船在A处时,从轮船上观察灯塔S,灯塔S在轮船的北偏东75方向,航行12分钟后,轮船到达B处,在B处观察灯塔S,S恰好在轮船的正东方向,已知距离灯塔S8海里以外的海区为航行安全区域,问:如果这艘轮船继续沿东北方向航行,它是否安全?

解题反思:解决这类问题时常用的模型:

小结:

P93 例3

P94 检测评估

教学反思:

锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。

在今后教学过程中,自己还要多注意以下两点:

(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。

角函数教学设计【第二篇】

教材分析

本节是北师大版高中必修四第三章和两角和与差的正弦、余弦函数(书第116页-118页内容),本节是在学生已经学习了任意角的三角函数和平面向量知识的基础上进一步研究两角和与差的三角函数与单角的三角函数关系,它既是三角函数和平面向量知识的延伸,又是后继内容两角和与差的正切公式、二倍角公式、半角公式的知识基础,起着承上启下的作用,对于三角函数式的化简、求值和三角恒等式的证明等有着重要的支撑。本课时主要讲授运用平面向量的数量积推导两角差的余弦公式以及两角和与差的正、余弦公式的运用。

学情分析

学生在本节之前已经学习了三角函数和平面向量这两章知识内容,这为本节课的学习作了很多的知识铺垫,学生也有了一定的数学推理能力和运算能力。本节教学内容需要学生已经具有单位圆中的任意角的三角概念和平面向量的数量积的`表示等方面的知识储备,这将有利于进一步促进学生思维能力的发展和数学思想的形成。

课程资源

高中数学北师大版必修四教材;多媒体投影仪

教学目标

1、掌握用向量方法推导两角差的余弦公式,通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础;

2、让学生经历两角差的余弦公式的探索、发现过程,培养学生的动手实践、探索、研究能力。

3、激发学生学习数学的兴趣和积极性,实事求是的科学学习态度和勇于创新的精神。

教学重点和难点

教学重点:两角和与差的余弦公式的推导及运用

教学难点:向量法推导两角差的余弦公式及公式的灵活运用

(设计依据:平面内两向量的数量积的两种形式的应用是本节课“两角和与差的余弦公式推导”的主要依据,在后继知识中也有广泛的应用,所以是本节的一个重点。又由于“两角和与差的余弦公式的推导和应用”对后几节内容能否掌握具有决定意义,在三角变换、三角恒等式的证明、三角函数式的化简求值等方面有着广泛的应用,因此也是本节的一个重点。由于其推导方法的特殊性和推导过程的复杂性,所以也是一个难点。)

教学方法

情景教学法;问题教学法;直观教学法;启发发现法。

学法指导、

1、注意任意角的终边与单位圆交点坐标、平面向量的坐标的表示以及平面向量的数量积的两种表示形式的复习为两角差的余弦的推导做必要的准备,并让学生体会感悟向量在解决数学问题中的工具作用(体现学习过程中循序渐进,温故知新的认知规律。);

2、突出诱导公式在三角函数名称变换中的作用以及变角思想让学生进一步体会数学的化归思想。

3、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察掌握公式的特点。

教学过程

教学流程为:创设情境----提出问题----探索尝试----启发引导----解决问题。

(一)创设情境,揭示课题

问题1:同学们都知道,,试问是否与相等?大家可以猜想是不是等于呢?下面我们就一起探讨两角差的余弦公式

设计意图

通过问题情境,自然流畅地提出问题,揭示课题,引发学生思考。使学生目标明确、迅速进入新知学习。

(二)问题探究,新知构建

问题2:你能用与的三角函数值表示出这两个角的终边与单位圆的交点A和B的坐标吗?怎样表示?

师生活动

画单位圆在直角坐标系中画出单位圆并作出与角的终边与单位圆的交点,引导学生利用三角函数值表示出交点坐标。

设计意图

通过复习使学生熟悉基础知识、特别是用角的正、余弦表示特殊点的坐标,为新课的推进做准备。

问题3:如何计算向量的数量积?

师生活动

引导学生观察是的夹角,引发学生对向量的思考,并及时启发学生复习向量的数量积的的两种表示。

设计意图

平复习面内两向量的数量积的几何法与代数法两种表示,从而使“两角差的余弦公式”的推证水到渠成。

问题4:计算cos15°和cos75°的值。

分析:本题关键是将分成45°与30°的和或者分解成45°与15°的差,再利用两角差的余弦公式即可求解。(学生板演)

师生活动

引导学生初步应用公式

设计意图

让学生熟练两角和与差的余弦公式,体会学生公式的实际应用价值,即:将非特殊角转化为特殊角的和与差。并引发学生对两角和的余弦公式的推证兴趣。

问题7:同学们都知道诱导公式cos(-β)=cosβ,sin(-β)=-sinβ,那么你会推导出cos(α+β)=?

师生活动

学生在老师的引导下自主推证两角和的余弦公式。

设计意图

让学生在学习中体会感受化归思想和类比思想在新知识发现中的作用。

问题8:同学们已学过sinα=cos(-α),那么你会运用这个公式推证出sin(α-β)和sin(α+β)吗?

师生活动

教师引导学生推导公式。

设计意图

新知构建并体会转化思想的应用。

问题9:勾画书中两角和与差的三角函数公式并观察它们有什么特点?

两角和与差的余弦:

同名之积相加减,运算符号左右反

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

两角和与差的正弦:

异名之积相加减,运算符号两相同

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

师生活动

学生总结公式特点,学习小组交流,教师总结公式结构特征。

设计意图

让学生熟悉并掌握公式特征,如:教的顺序、函数的顺序、符号的规律。

(三)知识应用,熟悉公式

例2、(1)求sin(-25π\12)的值;

(2)求cos75°cos105°+sin75°sin105°的值.

设计意图进一步熟悉诱导公式、两角和与差的三角函数公式的特点及正逆应用。

例3、已知求sin(α+β),cos(α-β)的值。

思维点拨:观察公式本题已知条件应先计算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函数的平方关系,并注意α,β的取值范围来求解.

设计意图

训练学生思维的有序性,例如在面对问题时,要注意先认真分析条件,明确使用公式时要有什么准备,准备工作怎么进行等。还要重视思维过程的表述,不能只看最后结果而不顾过程表述的准确性、简洁性等。在教学过程中,对例3适当延伸,目的要求学生正确使用分类讨论的思想方法,在表述上也对学生有了更高的要求。

(四)自主探究,深化理解,拓展思维

变式训练1:如何计算?

反思本节学习的两角和与差的三角函数公式对任意角也成立吗?

变式训练2:例3中如果去掉条件,对结果和求解过程会有什么影响?

变式训练3:下列等式成立吗?

cos(α+β)=cosα+cosβ

cos(α-β)=cosα-cosβ

sin(α+β)=sinα+sinβ

sin(α-β)=sinα-sinβ

设计意图

通过变式训练与讨论进一步培养学生自主探究、合作学习交流的能力,以熟悉公式的变形运用并掌握两角和与差的正余弦公式的特征及应用。

(五)小结反思,评价反馈

1、本节学习的内容有哪些?

2、两角和与差的三角函数公式有什么特点?运用两角和与差的三角函数公式可以解决哪些问题?

3、你通过本节学习有哪些收获?

设计意图

进一步熟悉公式,加深学生对公式的理解和认识,培养学生的归纳总结能力和交流表达能力,让学生获得成功体验。

(六)作业布置,练习巩固

书面:课本第121页A组1中间两题;2(2)(3)(4)B组2(2)

课后研究:课本第118页练习5;

设计意图巩固和理解知识,掌握两角和与差的三角函数公式。并引发学生对新知学习与探求的欲望和兴趣。

板书设计

两角和与差的正、余弦函数

公式

推导

例1

例2

例3

教后反思

本节教学设计首先通过问题情景阐述了两角差的余弦公式的产生背景,然后通过组织学生分析,讨论,并借助于单位圆中以原点为起点的两向量的数量积的两种表示,对α大于β使,cos(α-β)给出证明,进而用向量知识探究任意角的情形。这些均体现了数学中从特殊到一般的思想方法,符合新课改的基本理念。同时,例题1、2、3由浅入深,让学生在问题中探究,在探究中建构新知。使学生在已有基础上,充分利用归纳、类比等方法激发学生进一步探究的欲望,建立Cα±β模型,有利于学生数学思维水平的提高,同时及时巩固,应用,拓展延伸,加强了学生对新知的掌握和灵活运用。给学生思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性,从而体现教师主导作用和学生主体作用的和谐统一。但课后发现小结仓促,如果能再引导学生自我小结、反思。可能会更好.

关于教学设计的思考

1、本节课授课内容为《普通高中课程标准实验教科书·数学(4)》(北师大版)第三章第一节,本节课的教学重点是:两角和与差的余弦公式的推导和应用是本节的又一个重点,也是本节的一个难点。所以这节课效果的好坏,体现在对这两点实现的程度上,因此,例题、练习、作业应用绕这两方面设计。而平面内两向量的数量积的两种形式的应用又是推导两角差的余弦公式的关键;因此在复习,平面内两向量的数量积的两种形式是本节课必要的准备。

2、本节课采用“创设情境----提出问题----探索尝试----启发引导----解决问题”的过程来实现教学目标。有利于知识产生、发展、解决这一认知过程的完整体现。在教学手段上使用多媒体技术,有效增加课堂容量。在教学过程环节,采用问题教学,再逐步展开的方式,能够充分调动学生的学习积极性,让学生的探索具有明确的目的性,减少盲目性。在利用平面内两向量的数量积的几何形式、代数形式建立等式,而得到两角差的余弦公式后,利用代数思想推出两角和的余弦公式,使学生进一步体会数学思想的深刻性。通过对公式的对比,可以加深学生对公式特征的印象,同时体会公式的线形美与对称美,给学生以美的陶冶。作业的布置中,突出了学生学习的个体差异现实,使学有余力的学生产生挑战的心理感受,也为下一节内容的学习做准备。

3、数学的学习,主要是培养人的思维课程,强调思维构造,以问题解决为主的课程,既注重人的智慧获得,又注重人的情感发展,因而在教学中,应注意“完整的人”的数学教育,不搞“以智力开发为主的教育”,使学生成为真正的人。因此在课堂教学中,教学设计应从学生出发,给学生更多的自由,让他们真正参与,注重学习的过程,尤其重视以学生为主的数学活动,注重学生的自我完善,自我发展,不把学生当成接受知识的容器,要教会学生学会学习,尤其是有意义的接受学习和发现学习,“授人以鱼,不如授之以渔,授人以鱼祗救一时之及,授人以渔则可解一生之需”。在数学教育中,注重培养学生的自信,自重,自尊,使他们充满希望和成功,促进其健康人格的形成。只有这样,才能让数学课更有生机和人性,才能学生真正成为学习的主人。

角函数教学设计【第三篇】

一、教材分析

这节课是在初中学习的锐角三角函数的基础上,进一步学习任意角的三角函数。任意角的三角函数通常是借助直角坐标系来定义的。三角函数的定义是本章教学内容的基本概念和重要概念,也是学习后续内容的基础,更是学好本章内容的关键。因此,要重点地体会、理解和掌握三角函数的定义。

二、学生情况分析

本课时研究的是任意角的三角函数,学生在初中阶段曾研究过锐角三角函数,其研究范围是锐角;

其研究方法是几何的,没有坐标系的参与;

其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。

三、教学目标

知识与能力:借助单位圆理解意角的三角函数(正弦、余弦、正切)的定义。(能根据任意角的三角函数的定义求出具体的角的各三角函数值。)

过程与方法:在学习的过程中,培养学生用代数方法研究几何问题的思路。

情感态度与价值观:让学生积极参与知识的形成过程,经历知识的“发现”过程,获得发现的“经验”。

四、教学重点、难点分析

重点:理解任意角三角函数(正弦、余弦、正切)的定义。

难点:通过坐标求任意角的三角函数值。

五、教学方法与策略

教学过程中采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。

六、教学过程

问题1:现在请你回忆初中学过的锐角三角函数的定义,并思考一个问题:如果将锐角置于平面直角坐标系中,如何用直角坐标系中角的终边上的点的坐标表示锐角三角函数呢?

设计意图:将已有知识坐标化,分化难点。用新的观点再认识学生的已有知识经验,发挥其正迁移作用,同时使本课时的学习与学生的已有知识经验紧密联系,使知识有一个熟悉的起点,扎实的固着点。)

预计的回答:学生可以回忆出初中学过的锐角三角函数的定义,但是在用坐标语言表述时可能会出现困难——即使将角置于坐标系中但是仍然习惯用三角形边的比值表示锐角三角函数,需要教师引导学生将之转换为用终边上的点的坐标表示锐角三角函数。

问题2:回忆弧度制中1弧度角的几何解释,它是借助于单位圆给出的,能否从中得到启示将上述定义的形式化简,化简的依据是什么?写出最简单的形式。

设计意图:引入单位圆。深化对单位圆作用的认识,用数学的简洁美引导学生进行研究,为定义的拓展奠定基础。该问题与问题1结合,分步推进,降低难度,基本尊重教材的处理方式。

预计的困难:由于学生只接触过一次单位圆,对它所能起的作用只有一般的了解,所以需要教师的引导。也可以引导学生从形式上对上述定义化简,使得分母为1,之后通过分母的几何意义将之与单位圆结合起来。

单位圆中定义锐角三角函数:点P的坐标为(x,y),那么锐角α的三角函数可以用坐标表示为:

[sina=MPOP=y],[cosa=OMOP=x],[tana=MPOM=yx]。

問题3:大家现在能不能给出任意角的三角函数的定义。

设计意图:引导学生在借助单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义。

有学生给出任意角三角函数的定义,教师进行整理。

例1:(P12)例2:(P12)

学生练习:P15练习1、2。

小结:任意角的三角函数的定义。

作业:P20 A组1、2。

角函数教学设计【第四篇】

教材分析:

本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学 '相似三角形''勾股定理'等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:

锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时

教学目标:

知识与技能:

1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算

3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:

通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。

情感态度与价值观:

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

重难点:

1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

教学过程:

一、复习旧知、引入新课

引入操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片)

小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米。然后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗?

下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦

二、探索新知、分类应用

活动一问题的引入

问题一为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?

锐角三角函数:训练题

1.在旧城改造中,要拆除一建 筑物AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区。现在从离点B 24 m远的建筑物CD的顶端C测得点A的仰角为45°,点B的俯角为30°,问离点B 35 m处的一保护文物是否在危险区内?

2.在高出海平面200 m的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离?

锐角三角函数练习题

1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为( )

=cosA′ =3cosA′ =cosA′ D.不能确定

相关推荐

热门文档