首页 > 学习资料 > 教学设计 >

有理数的减法教学设计【精彩4篇】

网友发表时间 62942

发表时间

【阅读指引】阿拉题库网友为您分享整理的“有理数的减法教学设计【精彩4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

有理数的减法教学设计【第一篇】

本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用

1、 知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。

2、 能力目标:培养学生探究思维能力和分析解决问题的能力

3、 情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。

重点:有理数的减法法则,熟练地进行有理数的减法运算

难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算

根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

附教学工具:温度计、投影仪、多媒体

根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

1、 复习有理数的加法法则,为新课的讲授作好铺垫。

2、 (提问)用算式表示:与-3的和等于-10的数。

(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。

1、 通过投影仪给出以下算式:

减法 加法

(+10)-(+3)=+7 (+10)+(-3)=+7

让学生比较上面这两个算式并讨论后得出:

(+10)-(+3)=(+10)+(-3)

再给出以下算式:

减法 加法

(+5)-(+2)=+3 (+5)+(-2)=+3

继续让学生比较上面这两个算式并讨论后得出:

(+5)-(+2)=(+5)+(-2)

从而,它启发我们有理数的减法可以转化成加法进行

2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。

文字叙述:减去一个数,等于加上这个数的相反数

字母表示:a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)

强调运用法则时:被减数不变,减号变加号,减数变成其相反数

减数变号

(减法============加法)

3、出示温度计,用多媒体出现(如p81的图2-20),并进行动画演示,通过求15℃ 比5℃ 高多少?15℃ 比-5℃ 高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本p82的练习1,

4、通过例题教学使学生巩固方法,初步具备解决问题的能力。

例1.计算 :(1) (-3)-(-5); (2) 0 - 7

例2.计算(1) - (-) ; (2) (-3 - ) - 5

说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。

让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。

(师生共同完成)

本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)

课本p83习题的2、3、4、5的偶数题

通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。(六)板书设计:(略)

有理数的减法教学设计【第二篇】

目标

1.理解掌握法则,会将运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力。

3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

建议

本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解法则是难点,突破的关键是转化,变减为加。学习中要注意体会:遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

1.指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

设计示例

一、素质目标

(一)知识点

1.理解掌握法则。

2.会进行运算。

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想。

2.通过有理数减法法则的推导,发展学生的逻辑思维能力。

3.通过运算,培养学生的运算能力。

(三)德育渗透点

通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

(四)美育渗透点

在算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

二、学法引导

1.方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与活动。

2.学生学法:探索新知→归纳结论→练习巩固。

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算。

2.难点:有理数减法法则的推导。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片。

六、师生互动活动设计

提出实际问题,学生积极参与探索新知,出示练习题,学生以多种方式讨论解决。

七、步骤

(一)创设情境,引入新课

1.计算(口答)(1); (2)-3+(-7);

(3)-10+(+3); (4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

总结:这就是我们今天要学的内容。(引入新课,课题)

教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3). (1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以。

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

教法说明发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

2.再看一题,计算(-10)-(-3).

启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3). (2)

进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

教法说明由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。()

强调法则:(1)减法转化为加法,减数要变成相反数。(2)法则适用于任何两有理数相减。(3)用字母表示一般形式为:.

教法说明结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。

4.例题讲解:

[出示投影1 (例题1、2)]

例1  计算(1)(-3)-(-5); (2)0-7;

例2  计算(1)-(-); (2)-.

例1是由学生口述解题过程,,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算。

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

教法说明学生口述解题过程,做示范,从中培养学生严谨的学风和良好的学习习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

师:组织学生自己编题,学生回答。

教法说明与学生以平等身份参与,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识。同时,可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

(三)尝试反馈,巩固练习

师:下面大家一起看一组题。

[出示投影2 (计算题1、2)]

1.计算(口答)

(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

(4)(-4)-9 (5)0-(-5); (6)0-5.

2.计算

(1)(-)-; (2)-(-);

(3)-; (4)-.

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上。

教法说明学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备。

用实物投影显示课本第45页的画面。

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米。

教法说明此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《大纲》中规定的“要使学生受到把实际问题抽象成问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际。

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略。

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算。对于不能解决的2-5这类不够减的问题就不成问题了。也就是说,在有理数范围内,减法总可能实施。

八、随堂练习

1.填空题

(1)3-(-3)=____________; (2)(-11)-2=______________;

(3)0-(-6)=____________; (4)(-7)-(+8)=____________;

(5)-12-(-5)=____________; (6)3比5大____________;

(7)-8比-2小___________; (8)-4-( )=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数。( )

(2)(-2)-(+3)=2+(-3).( )

(3)零减去一个数等于这个数的相反数。( )

(4)方程在有理数范围内无解。( )

(5)若,,,.( )

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题。

(二)选做题:课本第84页中5、8.

十、设计

1.(1)6; (2)-13; (3)6; (4)-15;

(5)-7; (6)-2; (7)6; (8)-4;

(9)+; (10)8848-(-155).

2.× × √ × √

作业 答案

(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92

3.(2)-;(4);(6)-;(8)

4.(2);(4);(6);(8)

(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-;(6)

8.(1)4;(2)5;(3)7;(4)5

有理数的减法教学设计【第三篇】

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。中要注意体会:遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

一、素质目标

(一)知识教学点

1.理解掌握有理数的减法法则。

2.会进行有理数的减法运算。

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想。

2.通过有理数减法法则的推导,发展学生的逻辑思维能力。

3.通过有理数的减法运算,培养学生的运算能力。

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

(四)美育渗透点

在算术里减法不能永远实施,了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

2.学生学法:探索新知→归纳结论→练习巩固。

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算。

2.难点:有理数减法法则的推导。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片。

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1); (2)-3+(-7);

(3)-10+(+3); (4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成问题,从而点明本节课课题—有理数的减法。

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3). (1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以。

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

教法说明教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3). (2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

教法说明由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数。(2)法则适用于任何两有理数相减。(3)用字母表示一般形式为:.

教法说明结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到来源于实际,又服务于实际。

4.例题讲解:

[出示投影1 (例题1、2)]

例1  计算(1)(-3)-(-5); (2)0-7;

例2  计算(1)-(-); (2)-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算。

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

教法说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

师:组织学生自己编题,学生回答。

教法说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

(三)尝试反馈,巩固练习

师:下面大家一起看一组题。

[出示投影2 (计算题1、2)]

1.计算(口答)

(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

(4)(-4)-9 (5)0-(-5); (6)0-5.

2.计算

(1)(-)-; (2)-(-);

(3)-; (4)-.

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上。

教法说明学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备。

用实物投影显示课本第45页的画面。

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米。

教法说明此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用意识”的要求,把实际问题转化为有理数减法,说明来源于实际,又用于实际。

(四)课堂小结

提问:通过本节课你学到了什么?生答:略。

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算。对于不能解决的2-5这类不够减的问题就不成问题了。也就是说,在有理数范围内,减法总可能实施。

八、随堂练习

1.填空题

(1)3-(-3)=____________; (2)(-11)-2=______________;

(3)0-(-6)=____________; (4)(-7)-(+8)=____________;

(5)-12-(-5)=____________; (6)3比5大____________;

(7)-8比-2小___________; (8)-4-( )=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数。( )

(2)(-2)-(+3)=2+(-3).( )

(3)零减去一个数等于这个数的相反数。( )

(4)方程在有理数范围内无解。( )

(5)若,,,.( )

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题。

(二)选做题:课本第84页中5、8.

十、

有理数的减法教学设计【第四篇】

1.理解掌握法则,会将运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力。

3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解法则是难点,突破的关键是转化,变减为加。中要注意体会:遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

一、素质目标

(一)知识教学点

1.理解掌握法则。

2.会进行运算。

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想。

2.通过有理数减法法则的推导,发展学生的逻辑思维能力。

3.通过运算,培养学生的运算能力。

(三)德育渗透点

通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

(四)美育渗透点

在算术里减法不能永远实施,了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

2.学生学法:探索新知→归纳结论→练习巩固。

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算。

2.难点:有理数减法法则的推导。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片。

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1); (2)-3+(-7);

(3)-10+(+3); (4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成问题,从而点明本节课课题—.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3). (1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以。

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

教法说明教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3). (2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

教法说明由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数。(2)法则适用于任何两有理数相减。(3)用字母表示一般形式为:.

教法说明结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到来源于实际,又服务于实际。

4.例题讲解:

[出示投影1 (例题1、2)]

例1  计算(1)(-3)-(-5); (2)0-7;

例2  计算(1)-(-); (2)-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算。

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。

教法说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。

师:组织学生自己编题,学生回答。

教法说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

(三)尝试反馈,巩固练习

师:下面大家一起看一组题。

[出示投影2 (计算题1、2)]

1.计算(口答)

(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

(4)(-4)-9 (5)0-(-5); (6)0-5.

2.计算

(1)(-)-; (2)-(-);

(3)-; (4)-.

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上。

教法说明学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备。

用实物投影显示课本第45页的画面。

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米。

教法说明此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用意识”的要求,把实际问题转化为有理数减法,说明来源于实际,又用于实际。

(四)课堂小结

提问:通过本节课你学到了什么?生答:略。

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算。对于不能解决的2-5这类不够减的问题就不成问题了。也就是说,在有理数范围内,减法总可能实施。

八、随堂练习

1.填空题

(1)3-(-3)=____________; (2)(-11)-2=______________;

(3)0-(-6)=____________; (4)(-7)-(+8)=____________;

(5)-12-(-5)=____________; (6)3比5大____________;

(7)-8比-2小___________; (8)-4-( )=10;

(9)如果,,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数。( )

(2)(-2)-(+3)=2+(-3).( )

(3)零减去一个数等于这个数的相反数。( )

(4)方程在有理数范围内无解。( )

(5)若,,,.( )

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题。

(二)选做题:课本第84页中5、8.

十、

1.(1)6; (2)-13; (3)6; (4)-15;

(5)-7; (6)-2; (7)6; (8)-4;

(9)+; (10)8848-(-155).

2.× × √ × √

作业 答案

(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92

3.(2)-;(4);(6)-;(8)

4.(2);(4);(6);(8)

(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-;(6)

8.(1)4;(2)5;(3)7;(4)5

相关推荐

热门文档