首页 > 学习资料 > 教学设计 >

圆的面积教学设计(5篇)

网友发表时间 58326

发表时间

【序言】由阿拉题库最美丽的网友为您整理分享的“圆的面积教学设计(5篇)”作文资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

小学六年级数学《圆面积》二教学设计1

[教学目标]

1、使学生明确圆面积的概念;

2、使学生通过操作及课件的演示理解和掌握圆面积公式的推导方法;

3、使学生能够用圆的面积公式解决实际问题;

4、结合知识的学习,渗透转化的和极限的教学。

[教学重点和难点]

圆面积概念的建立;公式的推导及应用;转化和极限的渗透。

[教学准备]

学生:圆形纸板、剪刀、彩笔、三角板等学具。

教师:相应课件

[教学过程设计]

一、通过复习及“前导”明确概念

首先利用课件的“前导”演示,让学生直观感知 画圆留下的轨迹是条封闭的曲线;其次,在内填充颜色并分离,让学生明确:这条封闭的曲线长度是圆的周长;填充的部分是曲线围成的面是圆的面积。接着,让学生摸一摸手中圆形纸片的面积和周长,亲身体验一下。

反思:圆的面积是在圆的周长和半径的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

二、通过设想及“演示”以旧促新

1、设想

师:我们认识了圆的面积,那么该如何计算圆的面积?该怎样发现和推导圆的面积公式呢?你能否根据以前学过的平面图形面积计算公式的推导过程来设想一下怎样计算圆的面积吗?

生:―――――――――――。

2、让学生讨论、交流,发表见解,然后根据学生的回答再通过课件的“演示”再现平行四边形、三角形、梯形面积公式的推导过程。分析、对比各个公式推导过程的共同点和不同点,给学生以视觉的刺激,使学生领会到把一个图形转化成已学过的图形,从而推导出这个图形面积的计算公式。

反思:通过这一环节,渗透一种重要的数学,那就是转化的,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

三、动手操作及“演示”完成圆形的转变

1、师:通过上面的设想和演示知道了以前学过的平面图形的计算公式的推导是把该图形转化成以学过的图形,从而推导出这个图形的面积计算公式,那么你们能否按照老师的分法动手把你手中的学具—圆,分成8等份,剪开并合拼(随之出示“演示”中的把圆分成4等份的剪拼)

学生:小组合作动手摆一摆,把手中的圆的学具转化成学过的平面图形。

2、师:让学生观察它像什么图形?为什么说“像”平行四边形?

学生:发表自己的意见。

师:充分肯定学生的观察。

师:如果说8等份有点像,那么再来看看16等份会怎么样?(电脑演示16等份的圆,放在一起比较)哪个更像平行四边形? (学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的。)

师:引导学生闭上眼睛想象,如果分成32等份会怎么样?64等份呢?……

(电脑继续演示分成32等份的圆,64等份的圆的分割、拼合)

3、 电脑出示:把圆4、8、16、32等分的组合转化图。

让学生观察、比较、讨论充分发表自己的观察结果。

反思:让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学—极限的渗透。

四、通过推想及“演示”得出公式

师:我们通过刚才的动手操作和电脑的演示,知道了一个圆经过等分与拼接能转化成一个长方形。请再次观察在拼接的过程中,图形的面积是否发生了变化?

生:―――――――――(使学生明确,在拼接的过程中,图形的面积没有发生变化,该圆的面积等于拼成的长方形的面积)

师:那么,在观察的过程中,你是否发现,这个长方形的长、宽与圆的什么有关系?有什么关系?将你的发现和同学们交流一下。

生:---------------------(使学生明确:这个近似长方形的长相当于圆周长的一半,即 = ;宽就是圆的半径r)

师:打出课件让学生进一步观察比较,验证自己的观察结果。

师:谁能根据我们的观察结果,推导出圆的面积公式?

生:(讨论、交流、发表见解)

教师根据学生的发言,随之打出课件“圆的面积计算公式:

s=πr

反思:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

五、实际应用

(教师逐一展示本组课件,让学生积极讨论、交流、发表各自的见解)

题一、已知一个圆的半径是5厘米,求这个圆的面积?(图)

题二、一个圆桌的直径是90厘米,请你算一算这个圆桌面的面积是多少?(图)

题三、一只要换底的圆形水桶,经师傅量得底面周长是81.64厘米,你能否帮助师傅计算一下至少用多少铁皮?(图)

:1、回顾圆面积的推导过程;

2、讨论并得出求圆面积应具备那些条件?

反思:这组循序渐进的实际应用课件的展示,力求使学生掌握圆面积的计算公式,明确圆周长公式与圆面积公式的内在联系,提高在生活和生产中需要用圆面积计算公式来解决实际问题的能力,力求使学生在情景中建立空间观念。

以上就是一米范文范文为大家整理的5篇《圆的面积教学设计》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

《圆面积》试讲教案及反思2

《圆面积》小学数学评课稿

李老师讲的《圆的面积》这节课,是北师大版六年级的教材内容。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。

因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。听了李老师讲的《圆的面积》一课,深受启发,感觉课讲的很成功。由于李老师多次深入钻研教材,可以说准确地理解教材编写意图,跳出教材,对传统的课堂教学结构进行大胆的改革,把教师的主导作用和学生主体作用紧密结合起来,强化教学互动、学生实验操作推理验证,对提高学生素质和培养学生[此文转于YY空间。com]的创新意识与实践能力具有一定的作用,取得了较好的教学效果。我认为主要有以下几方面的亮点:

一、转变教师角色,改善教学行为。

在实施新课程的背景下,在“以发展为本”的课堂教学中,“教师的职责现在已经越来越少地传授知识,而是越来越多地激励思考;……他将越来越成为一位顾问,一位交换意见的参加者,一位帮助发现矛盾论点而不是拿出现成真理的人。他必须拿出更多的时间和精力去从事哪些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。”本课教学中,李老师更多地体现为:引导者——给学生的。学习提供明确的导航目标,辅导者——为学生提供各种便利与支持,使学生能够比较轻松地完成学习任务。合作者——关注学生的学习,参与学生的学习活动,与学生共同探讨问题,共同寻求问题的答案。与学生构成良好的学习共同体。

二、重视自主探究,发挥学生主体性。

学生主动参与学习活动,不但能使学生主动获取知识,促进知识的意义建构,更能培养学生[此文转于YY空间。com]的参与意识和创新精神。在教学“圆环的面积”计算公式推导时,李老师先让学生看一看一个大圆当中的小圆可以拿出来,那剩下的图形的面积也就是圆环的面积要怎么来求呢?学生通过图形能够直观的推出圆环的面积就应该用大圆的面积—小圆的面积,从而来推导出圆环的面积计算公式,然后留给学生充分的时间和空间,让学生自己在下面计算圆环的面积。再引导学生交流、验证自己的推导想法,师生共同倾听判断学生的汇报圆环的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历实验操作、总结验证的学习过程。这样有序的学习,不仅发展了学生的智能,而且提高了学生的实践能力和创新意识。

总之,这节课充分体现了李老师先进的教学理念和高超的教学艺术,充分体现张老师追求课堂教学有效性的探索过程,给我以深刻的启示和借鉴。

圆面积计算说课稿通用3

教学目标:

1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3.渗透转化的数学思想和极限思想。

教学重点:

利用圆面积计算公式正确计算圆的面积。

教学难点:

圆面积计算公式的推导。

教具准备:

等分圆教具。

学具准备:

分成十六等分、十二等分的圆形纸片。

教学过程:

一、复习旧知,导入新课

1.创设情景,出示图片:一片草地中间拴着一只小狗。

提问:小狗的最大活动范围是什么?

引出圆面积的概念:圆所占平面的大小就是圆的面积。

2.我们以前都学过什么图形的面积,平行四边形的面积计算公式是怎么推导出来的?圆的面积能不能也用这种方法推导出计算公式?

3.揭示课题:

今天这节课我们就来研究圆面积的计算方法。(板书课题:圆面积计算)

二、动手操作,探索新知

1.圆面积公式推导。

(1)动手实验。

a:学生把附页1的两个圆剪下来拼一拼(同桌合作)

b:派代表展示

(2)你有什么发现?

学生很惊奇的发现:圆转化成一个近似的平行四边形。

引导提问:a:这个图形哪里不像平行四边形呢?(边不是线段)

b:你知道这是为什么吗?怎样使拼成的图形更接近于平行四边形呢?(通过交流使,使学生明白:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。)

接着,教师展示:把圆割拼成一个近似于长方形的图形。

问:圆的面积与长方形的面积有什么关系?(相等)

(3)分析圆与长方形的关系

要求小组讨论:看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

出示提示:a:拼成的长方形的面积怎样计算?

b:指出长和宽(用彩笔标出长和宽)

c:长方形的长和宽与圆的周长、半径有什么关系?

(学生汇报讨论结果。引导学生说出因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。然后教师按其汇报板书:)

因为:长方形的面积= 长 × 宽

所以:圆的面积 = 周长的一半× 半径

S = πr × r

S = πr2

师:计算圆的面积需要知道什么条件?(半径)

2.你能计算出小狗的最大活动范围吗?需要知道什么条件?

在练习本上算一算。指名汇报。

3.教学例1

出示例题:圆形花坛的直径是20米,它的面积是多少㎡?

(1)这个问题如何解决?

(先求出半径再求面积)

(2)学生尝试练习,指名板演。

强调:r2表示r×r。

三、巩固练习

完成练习十六1-3题

1、第1题

学生独立完成,将结果填入表中,展示汇报。

2、第2题

(1)认真读题,弄清题意。

(2)独立列式计算,指名板演。

3、第3题

(1)说一说你的解题思路。

(2)学生独立思考列式解答

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、布置作业:练习十六第5题。

板书设计:

圆的面积

因为长方形的面积=长×宽

所以 圆的面积=周长的一半×半径

S=πr×r

S=πr2

圆面积教学反思4

圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。

本节教学主要突出了以下几点:

1.复习旧知识,引入新知。让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。

2.引导学生主动参与知识的形成过程。本课时教学的重点是圆的面积计算公式的推导。教学时,教师作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。在演示前,我要求学生边观察边思考什么变了,什么没变?你能发现什么?再让学生以小组为单位,通过合作剪拼,把圆转化成学过的图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。 在发现了圆面积的公式后,再用用数方格的方法来验证,学生觉得既轻松又简单,而且对公式的掌握和理解学得又牢固扎实。

在新课程理念的指导下,特别提出了“让学生经历类比、猜想、验证可探索圆面积的计算方法的过程。”而我在本课中的这些设计符合新课程的理念,使学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、验证等过程,发现了教学问题,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了的思维发展。

圆的面积教案5

第一课时

教学内容

圆的面积

教材第67、第68页的内容。

教学要求

1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

2.培养学生运用转化的思想解决问题的能力。

重点难点

重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

难点:理解圆的面积公式的推导过程。

教具学具

实物投影,各种图形的纸片。

教学过程

一导入

1.我们学过哪些平面图形的面积公式?

2.长方形、平行四边形和三角形的面积公式分别是什么?

3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。

二教学实施

1.明确圆的面积的。概念。

(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

(2)圆的大小是由什么决定的?

(3)展示由“曲”变“直”的渐变图。

引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。

2.学生动手操作,推导圆的面积公式。

为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,

(1)指导学生动手摆学具,并思考几个问题:

你摆的是什么图形?

你摆的图形的面积与圆的面积有什么关系?

所摆图形的各部分相当于圆的什么?

你如何推导出圆的面积?

(2)学生动手摆学具,然后发言。

拼成长方形:

老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

出示教材第67页上面的图加以说明。

拼成的近似长方形的长和宽与圆的各部分有什么关系?

从图中可以看出圆的半径是r,长方形的长是πr,宽是r。

长方形的面积=长×宽

↓ ↓↓

圆的面积=πr×r=πr2

如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。

3.利用公式计算圆的面积。

出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

板书:20÷2=10(m)

×102

=×100

=314(m2)

314×8=2512(元)

答:铺满草坪需要2512元。

老师强调指出:列出算式后,要先算平方,再与π相乘。

三课堂作业新设计

1.直接写出得数。

22= 32= 42= 52= 62= 72=

82= 92= 102= == =

2.求下面各圆的面积。

3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

4.一个圆桌桌面的直径是米。它的面积是多少平方米?

四思维训练

计算阴影部分的面积。(单位:分米)参考答案

课堂作业新设计

平方分米平方分米1256平方厘米平方米

平方分米

平方米

思维训练

平方分米

板书设计

圆的面积

长方形的面积=长×宽

↓ ↓↓

圆的面积=πr×r=πr2

20÷2=10(m)

×102

=×100

=314(m2)

314×8=2512(元)

答:铺满草坪需要2512元。

备课参考教材与学情分析

本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

课堂设计说明

1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。

2.教学时,强调知识迁移的过程。

平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。

3.组织学生观察猜想。

先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。

相关推荐

热门文档