首页 > 学习资料 > 教学设计 >

《平行四边形的面积》教学设计一等奖精选14篇

好文发表时间 4011295

通过引导学生理解平行四边形的性质,结合实际案例和互动活动,激发学习兴趣,提升计算面积的能力,能否有效掌握?以下是网友为大家整理分享的“《平行四边形的面积》教学设计一等奖”相关范文,供您参考学习!

《平行四边形的面积》教学设计一等奖

平行四边形的面积教学设计一等奖 篇1

教学内容:

课本第73-74页练习十七第4-9题

教学要求:

1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

2、养成良好的审题习惯,树立责任感。

教学重点:

能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

教具准备:

口算卡片。

教学过程:

一、复习

1、平行四边形的面积计算公式是什么?

2、口算:

÷+×-

530+×-986÷12

3、求平行四边形的面积。

(1)底12米,高是7米;(2)高13分米,底长6分米;

(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米

4、出示课题。

二、新授

1、补充例题

一块平行四边形的麦地底长125米,高24米,它的.面积是多少平方米?

(1)独立列式后,指名口述,教师板书。

(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

让学生议一议,然后自己列式解答,最后评讲。

(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?

与上题比较,从数量关系上看,什么是相同的?什么是不同的?

让学生自己列式。

辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

A900×(125×24÷10000)

B900÷(125×24)

C900÷(125×24÷10000)

2、(略)

三、巩固练习

练习十七第6、7题

四、课堂作业

练习十七第8、9题

⑧有一块平行四边形的菜地,底是米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?

⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?

板书设计:

平行四边形面积的计算

平行四边形的面积教学设计一等奖 篇2

教学目的:

1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

4、培养学生自主学习的能力。

教学重点:

掌握平行四边形面积公式。

教学难点:

平行四边形面积公式的推导过程。

教具、学具准备:

1、多媒体计算机及课件;

2、投影仪;

3、硬纸板做成的可拉动的长方形框架;

4、每个学生5张平行四边形硬纸片及剪刀一把。

教学过程:

一、复习导入:

1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

二、质疑引新:

1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

三、引导探求:

(一)复习铺垫:

1、什么图形是平行四边形呢?

2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

(二)推导公式:

1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

4、学生实验操作,教师巡视指导。

5、学生交流实验情况:

⑴谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

⑵有没有不同的剪拼方法?(继续请同学演示)。

⑶微机演示各种转化方法。

6、归纳总结规律:

沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

⑴平行四边形剪拼成长方形后,什么变了?什么没变?

⑵剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶剪样成的图形面积怎样计算?得出:

因为:平行四边形的面积=长方形的面积=长×宽=底×高

所以:平行四边形的面积=底×高

(板书平行四边形面积推导过程)

7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作”.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=或S=ah(板书)。

8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

四、巩固练习:

1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

2、练习:

(1)(微机显示例一)求平行四边形的面积

(2)判断题(微机显示,强调高是底边上的高)

(3)比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

(4)思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

五、问答总结:

1、通过这节课的学习,你学到了哪些知识?

2、平行四边形面积的计算公式是什么?

3、平行四边形面积公式是如何推导得出的?

六、课后作业:

P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形的面积教学设计一等奖 篇3

教学目标:

1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法

2、能用平行四边形面积的计算方法解决简单的实际问题。

3、在操作、观察、比较中,渗透转化的思想方法。

4、在探究活动中,体验到成功的快乐。

教学重点:

推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。

教学难点:

推导平行四边形面积公式

教学准备:

课件平行四边形硬纸片剪刀透明方格纸

教学过程:

一、情境激趣:

师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?

1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)

2、铺平行四边形的草坪需要多少钱?师:需要先求什么?

生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)

二、实验探究:

1、猜想

那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

2、实验

1)独立自主探究:

师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?

生:我用数格子的方法。

师:数格子时,不足一格的按一格算,把得到的数据填在表格里

师:还有什么方法?

生:我用剪一剪、拼一拼的方法。

师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。

2)小组内交流:

师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。

3)学生汇报:

第一个小组:(1)数格子(把表格带到前面说)

(2)剪拼

师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)

是这样吗?师课件演示解说强调平移

师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示

(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)

师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)

师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah

四、运用公式解决

师:现在我们来算一下铺这块平行四边形草坪要用多少钱?

(生口算)

五、拓展练习

1、求下列图形的面积是多少?

底15厘米,高11厘米

(不仅准确计算出了结果,速度还很快,真不错。)

2、开放题:这是一张全国地图,有一个省的地形很接近,平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)

(能在实际问题的解决中恰当运用公式,了不起)

3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)

1)可以有几种方案?

2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)

六、全课小结:

师:这节课,你是怎么学习的?你有哪些收获?

(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写1篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。

课后反思

课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:

1、适时渗透、领悟思想方法

数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。

2、适时引导、主动建构知识

学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。

3、适时点拨、有效进行指导

探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。

课例点评

这节课教师在教学时以图形内在联系为线索,以转化这条数学思想方法为主线,在操作、观察、比较活动中,通过孕伏、理解、强化的过程,让学生在获得知识的同时,领悟转化的数学思想方法。具体表现在以下几点:

1、在情境中蕴含知识,孕伏思想方法

这节课情境的创设一方面紧紧地围绕所要探索的数学知识,另一方面又充分体现了知识之间的内在联系。创设了江滨公园铺草坪的情境图,分别呈现了一个长方形和一个平行四边形的草坪,并提供每平方米草坪的价格,引导学生根据信息提出问题。这一情境中既有长方形面积的计算,又有平行四边形面积的计算,把这些知识都融入一个具体的生活情境中,既唤起了学生已有的知识经验,又暗含了平行四边形的面积与长方形的面积有关。

2、在探究中体验知识,理解思想方法

这节课沿着“提出猜想——思考验证方法——实践验证”这个过程进行。一是独立探究。让每个学生根据自己的体验,用自己的思维方式进行探究,并且提出了活动要求。一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去探究所研究的图形与转化后的图形各部分之间有什么联系,从而找到平行四边形面积的计算方法。二是合作探究。在学生独立探究的基础上,让学生在小组内进行交流。通过交流,学生知道,任何形状的平行四边形都可以转化成长方形,这样,他们对图形变换的认识不再是个案的体会,而是对图形本质联系的体验。

3、在反思中提炼知识,强化思想方法

教师在教学中注重引导学生对转化过程进行反思。第一次是在学生汇报交流之后,教师用课件呈现图形转化的过程引导学生进行反思,重点是理解转化的思想方法;第二次是课即将结束时,教师引导学生总结这节课学习内容时再次回放图形转化的过程,重点是强化转化的思想方法。并引导学生:“在今后学习其它平面图形的面积时,还要用到这种方法。”这样为学生以后学习三角形、梯形面积的计算进行了思想方法的延伸。

总之,这节课教学时有两条主线,一条是数学基础知识,另一条是数学思想方法,并且把领悟数学思想方法作为数学教学的要务,把掌握数学思想方法作为学生数学学习的最高境界。

平行四边形的面积教学设计一等奖 篇4

教学内容:

课本第73-74页练习十七第4-9题

教学要求:

1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

2、养成良好的审题习惯,树立责任感。

教学重点:

能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

教具准备:

口算卡片。

教学过程:

一、复习

1、平行四边形的面积计算公式是什么?

2、求平行四边形的面积。

(1)底12米,高是7米;

(2)高13分米,底长6分米;

(3)底厘米,高4厘米;

(4)底分米,高分米

4、出示课题。

二、新授

1、补充例题

一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?

(1)独立列式后,指名口述,教师板书。

(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

让学生议一议,然后自己列式解答,最后评讲。

(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?

与上题比较,从数量关系上看,什么是相同的?什么是不同的?

让学生自己列式。

辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

A900×(125×24÷10000)

B900÷(125×24)

C900÷(125×24÷10000)

三、巩固练习

练习十七第6、7题

四、课堂作业

练习十七第8、9题

⑧有一块平行四边形的菜地,底是米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?

⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?

平行四边形的面积教学设计一等奖 篇5

教学目标:

1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。

2、通过操作、分析讨论等活动,培养学生

动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。

3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。

4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

教学重点:

使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。

教学难点:

能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。

教学过程:

一、情景引入

1、联系实际选择建房用地。

(1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?

(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。

让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?

(3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……

二、探究新知

1、面积计算公式的推导:

引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?

(1)讲解相关的要求。明确小组研究要求。

(2)操作验证。巡视,个别指导。

(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。

问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)

(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。

引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)

教师逐步点击交互,得出:

长方形的面积=长×宽

平行四边形的面积=底×高

(5)用字母表示面积计算公式。

(6)小结。(明确转化的方法。)

2、面积计算公式的应用:

(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。

讨论后,给出底和高,进行计算。

(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。

(3)试一试:计算平行四边形的面积。

3、教学小结。进行推导:

(1)明确研究的要求。

(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)

(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。

(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。

(5)了解认识、明确:S=a×h,S=a·h或者S=ah。

(6)进行小结。

4、初步运用公式。

(1)教学试一试,(2)练一练。

三、巩固应用

1、练习二“第1题”。

先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。

2、练习二“第2题”。

可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。

3、练习二“第3题”。

这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。

4、练习二“第5题”。

让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。

四、课堂总结

今天学习了什么?你有什么收获?(让学生自由发挥。)

平行四边形的面积教学设计一等奖 篇6

【教学内容】

义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。

【教学目标】

1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。

2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。

3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。

【教学重点】

平行四边形面积的推导过程、平行四边形的面积公式。

【教学难点】

平行四边形到长方形的转化过程。

【教学关键】

长方形和平行四边形的对比。

【教学方法】

猜想,动手操作,转化。

【知识基础】

长方形面积公式的推导过程、长方形的面积。

【教具准备】

活动的长方形边框

【辅助手段】

Ppt课件

【教学过程】

一、情境导入,揭示课题

1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)

(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)

我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。

(板书课题)

二、探究新知,操作实践

(一)激发思维,寻求探究策略

1、要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?

方法一:数方格

方法二:将平行四边形转化为长方形

2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)

测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?

3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)

请同学们拿出学具,四人一小组研究研究。

学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。

方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。

方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。

无论哪种方法,我们都是把平行四边形转化成长方形。

4、比较归纳,推导公式

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,

提问:比较这两个图形,你发现了什么?(形状变了,大小没变)

学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。

这个长方形的长与平行四边形的底相等

这个长方形的宽与平行四边形的高相等

因为:长方形的面积=长×宽

所以:平行四边形的面积=底×高

学生汇报公式,教师板书。同学们在心里默默的记记。

5、用字母表示公式

如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?

S=ah(学生说字母公式,师板书)

(二)解决问题

1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。

用公式验证前面数方格的平等四边形的面积。

平行四边形花坛的底是6m,高是4m,

它的面积是多少?

学生说,师板书

(三)实际应用

一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?

学生自己解答。

三、智力闯关

这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。

(一)有空就填

1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。

2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。

3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。

(二)明辨是非

1、平行四边形的面积等于长方形的面积。()

2、平行四边形的底边越长,它的面积就越大。()

3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()

3、6cm

5cm

4、5cm

4cm

4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()

(三)鱼目混珠

如图,你能计算出这个平行四边形的面积吗?

四、课堂反思。

1、学生谈收获。

2、师生共同总结。

五、拓展延伸。

用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。

平行四边形的面积教学设计一等奖 篇7

[课程标准]

探索并掌握平行四边形的面积公式,并能解决简单的实际问题。

[学情分析]

学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。

[学习目标]

1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(

2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。

[评价任务]

评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。

评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。

[资源与建议]

1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。

2、相关的资源:

(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。

(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。

3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。

4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。

[教学过程]

一、情境导入

出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?

师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]

二、探究新知

1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。

(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。

(2)活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)

(3)活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)

生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。

生:我发现平行四边形的面积=底×高

师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。

[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]

2、合作交流探究新知

(1)活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?

(2)活动4:动手操作

以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)

(3)活动5:学生汇报、交流。

师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,

(边演示边说剪拼过程,并贴剪拼图于黑板。)

师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?

你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?

哪个小组和他剪的不一样?

师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。

(4)大屏幕演示不同的拼法。

(5)活动6:小组讨论

师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)

小组讨论:

a、拼成的长方形的面积和原来平行四边形的面积—————。

b、拼成的长方形的长与原来平行四边形的底———————。

c、拼成的长方形的宽与原来平行四边形的高———————。

(6)学生汇报,教师总结板书:

师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

教师板书平行四边形的面积=底×高,

(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)

(8)介绍板书字母式。

师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。

观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?

[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]

三、实践应用

活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)

[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]

四、课堂检测

1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)

2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)

3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)

[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]

五、全课小结。

想一想你这节课学到了什么?

板书设计:平行四边形的面积

长方形的面积=长×宽

↓↓↓

平行四边形的面积=底×高

S=a×h

=ah

=ah

平行四边形的面积教学设计一等奖 篇8

教学要求:

1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

2.养成良好的审题习惯。

3.培养同学们分析问题、解决问题的能力。

教学重点:

运用所学知识解答有关平行四边形面积的应用题。

教具准备:

卡片

教学过程:

一、基本练习

1.口算。

2.平行四边形的面积是什么?它是怎样推导出来的?

3.口算下面各平行四边形的面积。

(1)底12米,高7米;

(2)高13分米,底6分米;

(3)底厘米,高4厘米

二、指导练习

1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

(1)生独立列式解答,集体订正。

(2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

①必须知道哪两个条件?

②生独立列式,集体讲评:

先求这块地的面积:25078010000=公顷,

再求共收小麦多少千克:=13650千克

(3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

与(2)比较,从数量关系上看,什么相同?什么不同?

讨论归纳后,生自己列式解答:58500(250781000)

(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

(1)你能找出图中的两个平行四边形吗?

(2)他们的面积相等吗?为什么?

(3)生计算每个平行四边形的面积。

(4)你可以得出什么结论呢?(等底等高的.平行四边形的面积相等。)

3.练习第10题:已知一个平行四边形的面积和底,求高。

分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

三、课堂练习

第7题。

四、小结

本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

平行四边形的面积教学设计一等奖 篇9

教学目标:

1、使学生初步认识平行四边形,初步体会平行四边形的对边平行且相等的特征。

2、理解平行四边形的底和高,并能正确画出底对应的高。

3、通过直观演示,个体操作,集体交流,帮助学生掌握平行边形的特性:易变形。

4、积极引导学生参与学习,帮助学生建立初步的空间观念和逻辑观念。教学重点:认识平行四边形,初步体会平行四边形的对边平行且相等的特征。

教学难点:

理解平行四边形的底和高,并能正确画出底对应的高。学具准备:每人一张平行四边形卡片,每人一张练习纸,三角尺。教具准备:多媒体课件,平行四边形卡片、平行四边形的框架。

一、创设情境,揭示主题。

1、游戏导入

回顾旧知:同学们学过哪些几何图形?

回顾长方形、正方形等图形做游戏—芝麻开门猜测门后面是什么图形?揭示课题:像这样的图形是平行四边形。

师:这节课老师将和同学们一起来认识平行四边形。(板书课题)

2、感受生活中的平行四边形

设计意图:把平行四边形与其他图形的联系中揭示,让学生在游戏中学习,初步了解要研究的问题,达到回顾旧知、引出新知的良好效果。更重要的是在这个过程中学生体会到先进的思维方式——迁移。

二、探究新知

(一)认识平行四边形

1、观察表象

明确平行四边形的对边、邻边。

2、动手操作,感悟特征。独立研究老师准备的平行四边形卡片,测一测,量一量,研究平行四边形的特点。

3、交流汇报,描述特征。

每4人一组,说说发现了什么以及怎么发现的。

师:仔细观察这个平行四边形,说一说,它有哪些特征?思考:用什么办法知道平行四边形的对边相等?

师:电脑展示,通过平移验证平行四边形对边平行且相等。

4、初步运用

下面哪个图形是平行四边形?

设计意图:利用新旧知识之间的联系,从知识的逻辑顺序和大数学观的背景中引导学生初步发现平行四边形和已学的长方形之间的联系,抓住问题的关键,让每一位学生通过推拉长方形框,既动手又动脑,充分发挥学生的主动性,感悟平行四边形的特性,从而发现平行四边形与长方形的联系,培养了学生的合情推理能力。

(二)认识平行四边形的底和高

1.观察表象

师出示两个不同的平行四边形,比较哪个更高。学生说说什么是平行四边形的高。

2、出示概念

通过多媒体边演示,教师边解释什么是平行四边形的底和高:从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

师:你在平行四边形上画几条高呢?你能分析一下平行四边形为什么可以画无数条高吗?

3、研究画法

师演示平行四边形的高的画法,指出哪个是底哪个是高。学生在学习纸上练习画高,投影展示。

(三)平行四边形的特性

师推拉长方形框让学生直观感受长方形框变成平行四边形框的过程。介绍平行四边形易变形特性以及在生活中的应用。

三、练习巩固,深化认识自我挑战

1判断

1)对边平行的四边形叫做平行四边形。()

2)把一个长方形框架拉成一个平行四边形后,周长变大了。()

3)长方形是特殊的平行四边形。()

2数一数图中共有()个平行四边形?

A、 2 B、 3 C 、 4 D

3判断下面的红色线段是平行四边形的高吗?

四、小结收获。

想一想,你今天由什么收获?

五、板书设计

平行四边形

两组对边分别平行的四边形叫做平行四边形。

平行四边形的面积教学设计一等奖 篇10

教学目标:

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:理解公式并正确计算平行四边形的面积.

教学难点:理解平行四边形面积公式的推导过程.

学具准备:每个学生准备一个平行四边形。

教学过程:

一、导入新课

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

二、民主导学

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

您现在正在阅读的五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的.长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=ah

说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的填空。

7、验证公式

学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

三、检测导结

1、学生自学例1后,教师根据学生提出的问题讲解。

2、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

3、做书上82页2题。

4、小结

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

5、作业

练习十五第1题。

附:板书设计

平行四边形面积的计算

长方形的面积=长宽 平行四边形的面积=底高

S=ah S=ah或S=ah

平行四边形的面积教学设计一等奖 篇11

教学目标:

1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

教学重点:

探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:

平行四边形面积公式的推导方法――转化与等积变形。

教学方法:

利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

教具、学具准备:

多媒体课件、平行四边形纸片、长方纸卡,剪刀等。

教学过程:

一、情境激趣

二、自主探究

古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?

在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?

1、数方格,比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?

(学生:麻烦,有局限性。)

(5)观察表格,你发现了什么?

出示表格平行四边形底底边上的高面积

长方形长宽面积

(6)引导学生交流自己的发现。

反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

(7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?

2、动手操作,验证猜想。

(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。

(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)

(3)观察并思考:

①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(5)交流反馈,引导学生得出结论

①形状变了,面积没变。

②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

观察面积公式,要求平行四边形的面积必须知道哪两个条件?

(平行四边形的底和高)

(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?

(转化图形的形状)

(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3、运用公式,解决问题。

(1)出示例1

例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?

(2)学生独立完成并反馈答案。

三、看书释疑P79~81

四、巩固运用

1、判断,平行四边形面积的概念。

(1)、两个平行四边形的高相等,它们的面积就相等()

(2)、平行四边形的高不变,底越长,它的面积就越大()。

(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。

2、计算,平行四边形的面积。

3、拓展1,你有几种方法求下面图形的面积?

4、拓展2比较,等底等高的平行四边形的面积。

五、课堂总结

通过这节课的学习,你有哪些收获?(学生自由回答。)

平行四边形的面积教学设计一等奖 篇12

教学目标:

1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。

3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。

教学重点:

理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。

教学难点:

理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。

教学准备:

平行四边形卡片、剪刀、方格子

教学过程:

一、创设情境,激趣导入

师:前些日子,我们学校租车组织了一部分同学去清源山脚下的假日农庄拔萝卜,我们班也有三个同学去了,现在我们现场采访一下,这几位同学拔完萝卜后有什么感受?

学生汇报

师:这次拔萝卜让我们体会到了劳动的快乐,也让我们感受到了丰收的喜悦。可是我们还要租车大老远跑到那边去很不方便,偶然的机会,我们知道了农庄有一位老伯有块地在承天寺,我们就商量:能不能把地换一下?老伯说:“好啊!”于是我们到两块地里去看了一下,感到为难了。同学们,你们愿意帮我们解决问题吗?(愿意)原来,这两块地的形状不一样,一块是长方形,一块是平行四边形,怎样知道他们的大小呢?这样换公平吗?

(多媒体出示一块长方形的地,一块平行四边形的地)

学生汇报

师:你们准备怎样解决呢?

生:分别算出长方形和平行四边形的面积就行了。

师:怎样才能知道这块长方形地的面积呢?(引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。)

多媒体出示方格和长方形的长与宽,学生求出长方形的面积。

师:那这块平行四边形面积怎样求呢?

学生小组交流

师:今天我们就来研究怎样求平行四边形的面积。(板书:平行四边形的面积)

二、动手实践,探索新知

学生汇报,教师引导:

1、数格子求平行四边形的面积

(多媒体出示格子,并说明一个方格表示1平方厘米)

师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。

学生汇报,得出平行四边形的面积。

师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平)

引导:我们用数方格的方法算出了这个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

2、割补法求平行四边形的面积

学生猜测

师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。

学生动手实践,合作交流。

学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

教师用课件演示剪——平移——拼的过程。

师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论:

1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了?

2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

3、你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

学生汇报,教师归纳:

经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。

师:现在谁能用一句话概括出平行四边形的面积?

学生汇报,教师板书:

此主题相关图片如下:

如果用s表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式可以怎么写呢?

s=a×h

师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

三、练习深化,巩固新知

1、计算下列图形的面积。(单位:cm)

此主题相关图片如下:

2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大?

此主题相关图片如下:

3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

此主题相关图片如下:

四、知识应用,总结评价

师:生活中还有哪些地方应用到我们今天所学的知识呢?

学生交流

师:我发现同学们通过今天的学习,收获还是很大的,谁愿意来跟我们分享一下你通过今天的学习,有什么收获呢?你认为你今天的表现怎么样?

学生交流。

平行四边形的面积教学设计一等奖 篇13

【教学内容】

教科书第70页例1、例2、练习十九1,3,4。

【教学目标】

1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

5.了解平行四边形在生活中的应用。

【教学重、难点】

教学重点:认识平行四边形及其特征。

教学难点:自己探索、发现、描述、应用平行四边形的特征。

【教学准备】

教具:课件,长方形、三角形活动框,磁性小棒。

学具:三角板,量角器,直尺,平行四边形

纸片(4人小组相同),小棒4根(两两等长)。

【教学过程】

一、导入新课

1.目标导学。

(1)什么是平行四边形?

(2)平行四边形有什么特征?

(3)长方形、正方形是平行四边形吗?

(4)你能用平行四边形的特征解决简单的数学问题吗?

(5)平行四边形在生活中有哪些应用?

2.活动引入,发挥想象。摆小棒游。

学生在桌子上任意摆1根、2根、3根、4根小棒,想一想,你会摆出哪些我们学过的形状?同桌交流,说一说自己摆的是什么形状。

同一平面内,学生用小棒可能会摆出线段、角、相交(垂直)、平行、三角形、任意四边形、长方形、正方形或平行四边形等。

3.揭示课题,激发兴趣。

在同一个平面内,用两根小棒可以摆角、平行线和垂线,用3根小棒可以围成三角形,那么用4根小棒就可以围成四边形。

长方形、正方形、平行四边形都有4条边,所以称为四边形。长方形和正方形同学们非常熟悉,而对于平行四边形却比较陌生,今天我们就一起来研究平行四边形的特征。

学生已认识了平行和垂直,掌握了长方形、正方形、三角形的特征。通过富有挑战性的摆小棒活动,既能激发学生的想象力和求知欲,又能唤起对旧知识的回忆,使学生在研究图形特征时,自觉将视角引入边、角及平行和垂直等问题中。

二、探究新知识

1.教学例1,认识平行四边形的静态特征。

(1)联系实例,初步感知。

(出示例1)平行四边形在生活中应用广泛。仔细观察屏幕,你能在这些物体上找出平行四边形吗?

学生边指边说抽象出实物中的平行四边形。

(2)思考:平行四边形一样吗?哪里不一样?(大小、边的长度、平行线的倾斜方向、角度等不一样。)

为什么我们都叫它们平行四边形呢?

什么是平行四边形?有两组对边分别平行的四边形。

2.探究平行四边形的特征

(1)经验迁移,学法指导。

它们除了两组对边分别平行,还有什么共同的特征呢?前面认识三角形时,同学们已经有了一些学习图形的经验,如果老师让你们自己去寻找平行四边形的特征,你准备从哪些方面去研究?(边和角,数和量……)

学习几何图形,就要抓住图形的关键部分,用眼看一看,动手做一做,用脑想一想,才能发现它们的特征。

(2)小组合作,自主探究。

①请拿出你们准备的平行四边形纸片,4人小组合作,用前面学习图形的方法,去寻找平行四边形的特征,可以在图片上适当标注,然后结合数据在小组内说一说你的发现。

②全班交流,引导认识。

你们发现了平行四边形的哪些特征?你们是通过什么方法发现的?

预设1:平行四边形有4个角、4条边,我们是通过看和数发现的。

预设2:平行四边形两条长边一样长,两条短边一样长,我们是用直尺量的。

预设3:平行四边形两条长边互相平行,两条短边也互相平行,我们是用三角板和直尺验证了的。

预设4:平行四边形对角相等,我们是用量角器量的。

小结:平行四边形的两组对边平行且相等,对角相等。

通过观察、动手、动脑、看、数、量、议等活动、归纳总结,发挥了学生的主观能动性。

3.教学例2,认识平行四边形的动态特征。

同学们真能干!大家团结协作,采用多种方法、多种手段找到了平行四边形的一些特征,并通过相互交流,验证了平行四边形这些特征的科学性。不过,平行四边形还有些特征不容易被发现,你们想知道吗?

(1)感知平行四边形“容易变形”的特性。

老师拿出长方形活动框。这是一个像孙悟空一样会变的平行四边形,像老师这样捏住它的两个对角,向相反方向拉动,它会听你们的话。

我们用同样的方法再来拉一拉三角形活动框,它会听你们的话吗?在拉动的过程中,你发现了平行四边形的什么奥秘?(三角形具有稳定性,不容易变形;平行四边形不稳定,很容易变形。)

拉动过程中,什么变了?什么没变?(边长没变,角度变了,两条边的距离变了)

平行四边形“容易变形”的特性在生活中也有很大的用处。(课件演示:升降机、伸缩门工作等。)

(2)理解长方形、正方形与平行四边形的联系。

①拉动平行四边形当拉成4个直角时就变成长方形了

②平行四边形和长方形有什么相同和不同的地方?长方形是不是平行四边形呢?同桌讨论一下。

预设1:长方形和平行四边形的相同点都是两组对边都分别平

行,说明长方形也具有平行四边形的特征,它是平行四边形。

预设2:它们的不同点是长方形4个角都是直角,所以我认为长方形是特殊的平行四边形。

③那正方形又是不是平行四边形呢?

预设3:正方形也有两组对边分别平行,所以它也属于平行四边形。同时,它还具有4个角都是直角、4条边都相等的特征,所以它还是特殊的长方形。

④原来平行四边形在特殊情况下也能变成长方形或正方形,所以我们说,长方形和正方形是特殊的平行四边形

⑤小结:在研究图形的过程中,我们要学会比一比、议一议,在变化中寻找图形隐藏的特征,发现图形之间的联系和区别。

通过“拉一拉”的操作活动,引领学生感悟平行四边形“易变形”的特性,理解长方形、正方形与平行四边形的联系,注重学生经验的迁移和教学方法的引导,有利于培养学生数学思考的条理性和逻辑性。

三、巩固练习,加深认识

1.练习十九第1题。

引导学生遮一遮,比画比画,结合特征寻找图形。

2.练习十九第3,4题。

学生独立做,交流做法,说一说是怎样想的。

3.开放练习,拓展思维

4.学校花匠准备在花园里栽4株花,并希望这4株花能围成一个平行四边形,他已经栽了3株,请你想一想第4株花可以栽在哪里。

练习由直观操作题到抽象的图形思维题,都紧紧抓住了平行四边形的特征去思考,由简到难,逐步拓展,由学生独立完成到教师引领,层层推进,较好地检验了学生应用新知识解决简单问题的能力。

五、回顾梳理,总结反思

解决目标导学5个问题

你还有哪些补充?

六、拓展升华

用两个三角形摆一个平行四边形。

平行四边形的面积教学设计一等奖 篇14

教学内容:

人教版小学数学教材五年级上册第87~88页例1及相关练习。

教学目标:

1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

2.能正确地应用公式计算平行四边形的面积。

教学重点:

探索并掌握平行四边形面积计算公式。

教学难点:

理解平行四边形面积计算公式的推导过程,体会转化思想。

教学准备:

课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。

教学过程:

一、激趣引入

1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?

你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)

2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?

3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?

【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。

二、新知探究

(一)合理猜想

1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。

预设1:邻边相乘;

预设2:底边乘高。

2.同桌互相说一说,你同意哪一种猜想?理由是什么?

3.反馈想法。

预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。

预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。

(二)验证猜想

同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?

1.邻边相乘的想法

教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?

学生:边的长短没变,高和面积变了。

教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?

教师:现在谁能说说这种拉的方法合理吗?为什么?

教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。

【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。

2.底边乘高的想法

(1)数格子验证

教师:这里的一些不是整格的怎么数?

学生:可以通过拼一拼,变成整格的再数。

教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?

(2)剪拼验证

教师:谁来展示你是如何进行剪接的?

学生:沿高剪下,补到另一边,拼成长方形。

教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)

那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。

【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。

(三)公式推导

教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?

学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?

教师:如果我们用

表示平行四边形的面积,用

表示平行四边形的底,用

表示平行四边形的高,那么平行四边形的面积计算公式可以用

来表示。

(四)回顾总结

回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?

【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。

三、练习巩固

(一)基础练习

1.完成练习十九第1题。

(1)请学生计算,并进行订正。

(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。

2.完成练习十九第2题。

(1)请学生计算,并进行反馈。

(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。

【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。

(二)拓展提升

一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?

1.引导学生算出它的面积;

2.请学生在方格纸上画出这样的平行四边形;

3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。

4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。

5.思考:面积相等的平行四边形一定等底等高吗?为什么?

【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。

四、总结提示

教师:回忆一下,今天这节课有什么收获?

总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。

相关推荐

热门文档

22 4011295