首页 > 学习资料 > 教学设计 >

七年级《一元一次方程》教学设计汇总14篇

史莱克发表时间 3893119

通过生动的实例引导学生理解一元一次方程的概念,培养解题能力与逻辑思维,如何提高学习兴趣呢?以下由阿拉网友整理分享的七年级《一元一次方程》教学设计相关文章,便您学习参考,喜欢就分享给朋友吧!

七年级《一元一次方程》教学设计

《一元一次方程》的优秀教案 篇1

教学任务分析

教学目标

知识

技能:1.用一元一次方程解决“数字型”问题;

2、能熟练的通过合并,移项解一元一次方程;

3、进一步学习、体会用一元一次方程解决实际问题。

过程

方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。

情感

态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。

重点建立一元一次方程解决实际问题的模型。

难点探索并发现实际问题中的等量关系,并列出方程。

教学环节安排

环节教学问题设计教学活动设计

情境引入

牵线搭桥,解下列方程:

(1)-5x+5=-6x;(2);

(3)+=;

总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。

引出问题即课本例3

问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。

学生:独立完成,根据讲评核对、自我评价,了解掌握情况。

探究一:数字问题

例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

分析1.引导学生观察这列数有什么规律?

①数值变化规律?②符号变化规律?

结论:后面一个数是前一个数的-3倍。

2、怎样求出这三个数?

①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?

②列出方程:根据三个数的和是-1701列出方程。

③解略

变式:你能设其它的数列方程解出吗?试一试。比比较哪种设法简单。

探究二:百分比问题(习题第8题)

问题某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%。今年人均收入比去年的倍少1200元。这个乡去年农民人均收入是多少元?

分析①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因为今年的人均收入比去年的倍少1200元,所以今年的收入又可以表示为_________元。

③根据“表示同一个量的两个式子相等”可以列出方程为________________________.

解答略教师:引导学生分析。

2、本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题。

学生:观察、讨论、阐述自己的发现,并互相交流。

根据分析列出方程并解出,求出所求三个数。

备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决。

变换设法,列出方程,比较优劣、阐述发现和体会。

教师:出示题目,引导学生,让学生尝试分析,多鼓励。

学生:根据引导思考、回答、阐述自己的观点和认识。

根据共同的分析,列出方程并解出,

(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)

尝试应用

1、填空

(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.

(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.

(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.

2、一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础。

通过(3)题理解连续数的表示法,并感受怎么表示最简单。

通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式。

教师:结合完成题目,汇总讲解,重点在于解法。

成果展示

1、通过本节所学你有哪些收获?

2、谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会。学生自我阐述,教师评价鼓励、补充总结。

补偿提高

1、有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.

2、下面给出的是2010年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是()。

通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题。

题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高。

根据学生完成情况灵活设置问题。

作业

设计作业:

必做题:课本4、5、第94页6题。

选做题:同步探究。教师布置作业,并提出要求。

学生课下独立完成,延续课堂。

《一元一次方程》的优秀教案 篇2

一、教材分析

(一)教材的地位和作用

本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。

(二)教材的重难点

本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。

二、教学目标分析

(一)知识技能目标

1.目标内容

(1)结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

2.目标分析

(1)本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

(2)七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.

(二)过程目标

1.目标内容

在活动中感受方程思想在数学中的作用,进一步增强应用意识.

2.目标分析

利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。

(三)情感目标

1.目标内容

(1)在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。

(2)通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想。

2.目标分析

七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

三、教材处理与教法分析

本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。

元一次方程教案 篇3

1.知识与技能:结合具体的问题,使同学们学会用解方程和用方程解决具体的问题。

2.过程与方法:结合课本内容和实际问题来使同学们形成用方程解决问题的观念。

3.情感态度价值观:在学习方程解决问题的过程中培养同学们对于学习数学的兴趣,培养同学们克服困难的品质,培养同学们探索新知的勇气和信心。

一、回顾与交流。

1.复习方程概念。

什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

判断下面是不是方程:

3x+5

6+8=14

6x=15

7x+315

1.两道解方程的题目再让学生说说是怎样解的。

通过这里的两道练习复习小学所学习的解方程的方法(即根据等式的性质来解。)

2.解简易方程。

复习61页第二题

首先让学生找出这三个题的等量关系,让学生分小组讨论讨论,在小组内说一说怎样找的等量关系。然后请学生在班内汇报一下。再请三位同学演板,并请演板的同学解释自己的做法。

(在这个过程中,让学生首先学会找出题目的等量关系,再根据等量关系去列方程,使学生养成用方程解决问题的时候,要懂得方程是根据等量关系列出的。)

集体订正:解(1)方程是怎样想的,检查解方程时每一步依据什么做的。(2)方程与(1)有什么不同,解方程时有什么不同? 师生共同小结解方程的一般步骤(略)。怎样检验方程的解对不对? 增加找数量关系练习。

1.六一班有50人,其中男生有28人,女生有多少人?

2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?

首先让学生独立找出题目中的等量关系,然后让同桌2人互相说一说,然后再解答。

二、巩固与应用。

引导学生做课本巩固练习题

1.解方程。组织学生独立完成,然后让学生上去讲一讲解题的方法。

2.看图列出方程,并求出方程的解。首先让学生在小组内说一说解决的方法,再请学生汇报交流。

3.看图理解题意,引导学生分析数量关系,再列方程解答。请学生演板,演板后组织学生讨论。

4.理解文字题,根据数量关系列出方程并求解。请学生找出题中的等量关系,再让学生完成。

三、总结提高。

通过这节课的学习,你解决了那些问题,还有那些困惑?

(通过学生的汇报,查漏补缺,找出这节课可能没有涉及到的问题加以解决。)

四、习题设计。

1.课本62页第5题。这里的两个小题,第1小题是用字母表示,学生要想用字母表示出来,必须先找出题目的等量关系。第2小题是用方程解决问题,除了要找出等量关系外还要列出方程并解答。

2.课本62页第6题。这是一道拓展性的习题,是数与形的结合,通过这道题的练习,除了锻炼学生用方程解决问题的能力,同时也复习了有关几何的知识。

元一次方程教案 篇4

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

一架天平、课件及班班通

一、创设情境,以情激趣

师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知

(一)等式两边都加上一个数

1、课件出示天平

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平

操作、演示、讨论、板书:

5=5 5+2=5+2

x=10 x+5=15

观察等式,发现什么规律?

3、探索规律

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数

观察课件,你又发现了什么?

学生汇报师板书:

x+2=10

x+2-2=10-2

x =8

(三)运用规律,解方程

三、巩固练习

1、完成课本68页“练一练”第2题

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结

这节课你学到了什么?学生交流总结。

板书设计: 解方程(一)

x+2=10

解: x+2-2=10-2 ( 方程两边都减去2)

x =8

元一次方程数学教案 篇5

学情分析:

学生在小学已经接触过一些较简单的数列问题,但当时的数列只在非负数范围内讨论,现在扩展到了整个有理数,就出现了符号的问题。其实,在本节课中的数列较简单,最关键的是学生能找到数列变化的规律并处理好符号问题。

教学目标:

1、 知识目标:学会探索数列中的规律,建立等量关系。

2、过程和方法目标:经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力。

教学重点:

找到数列中的规律,用代数式表示数,并能正确地列出方程。

教学难点:

找数列中的规律,并列出方程。

教学突破点:

对于学生来说,解数列问题的关键在于:如何发现数列的规律,如何用代数式表示数,怎样根据题目的条件找到相等的关系。因此,教师要引导学生学会发现数列中的规律,并找到题目中的等量关系,列出方程。

教学过程设计:

教学环节

教师活动

学生活动

设计意图

创设情境提出问题

问题1、有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

学生讨论,探索,并发现这个数列的形成规律。

本例是有关数列的数学问题,题目要求出三个未知数,与前几节不同的。是,问题中没有明确未知数之间的联系,需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生探索的规律

分析问题

引导学生探索这个数列的规律:

1、这个数列中,后一个数与前一个数有怎样的关系?

2、若设第一个数为x,那么,后两个数分别为什么?

3、方程应�

2、后两个数分别为:

-3x和-3×(-3x)=9x

3、方程列为:

X+(-3x)+9x=-1701

4、解方程,

得这三个数依次为:-243,729,-2187

5、方法二:设第二个数为x,则第一个数和第三个数分别为 。方程列为: 。

方法三:设第三个数为x.,则第一个数和第二个数分别为: 。方程列为:

通过讨论让学生认识到:用一元一次方程解含多个未知数的问题时,通常先设其中一个为x,再根据其他未知数与x的关系,用含x的式表示这些未知数。

通过对该题进行一题多设多列,让学生感受到方程的变化和解题的灵活性,有利于学生有条理的思考问题。

对于列出多种形式的方程的学生给与鼓励与表扬,增加学生学习数学的信心,让学生体会到成功的喜悦。

综合应用

巩固提高

问题2、图中的数阵是由77个偶数构成。

(1) 图中框内的4个数有什么关系?

(2) 在数阵中任意做一个类似于(1)中的框,设其中的一个数为x,那么其他三个数怎样表示?

(3) 小颖说四个数之和是436,你能求出这四个数吗?

(4) 小明说四个数之和是326,你能求出这四个数吗?

(5) 从(3)(4)中,你能发现什么规律吗?

(教师巡堂,指导学生)

学生思考,讨论,分析问题

1、从图中可以看出:22比20大2,36比20大16,38比20大18。

2、不同的设法又不同的表示方法:

例如:若设最小的数为x,则第二大,第三大和最大的数分别是:x+2,x+16,x+18。

3、可列出方程:

X+x+2+x+16+x+18=436

解方程,得:x=100

因此这四个数从小到大分别是:

100,102,116,118.

4、可列出方程:

X+x+2+x+16+x+18=326

解方程,得:x=

由于不是整数,因此这样的四个数不存在。

选择一道通过识图来解决问题的题目,目的是为了拓宽学生的视野,向学生展现多姿多彩的数学。

先观察现有数列的特点,以此类推,推广到整道题目都存在这样的特点。

(3)(4)两道题的设计还可以向学生揭示这四个数的和具备一定的特点,符合这个特点的,这四个数就存在。否则就不存在。培养学生的探索观察能力。

课堂小结

提问:

1、你是怎样分析数列中的规律的?

2、你学会判明方程的解是否合理吗?

3、试用自己的话概括“用一元一次方程分析和解决实际问题”的一般过程。

学生反思:

1、本节课我学得最好的内容是: ;

2、 知识我还没有完全掌握;

3、我将用 的方法来巩固我本节课所学的知识。。

使学生通过自身的反思,对“应用一元一次方

一元一次方程应用教案程解决实际问题”有较全面、理性的认识,进一步体会模型化的思想。

作业

针对的测试练习

分层练习,兼顾个层次的学生。

(三)针对的测试练习

A组:

1、三个连续偶数的和是30,求这三个偶数。

2、有一列数,按一定的规律排列成:-1,2,-4,8,-16,…,其中某三个相邻数的和是1650,这三个数各是多少?

3、小明撕下2月份三章日历,每两张的日期之和分别为27,28,29,你能说出这三张日历的日期是多少吗?

B组:

1、在某月内,李老师要参加三天的学习培训,现在知道这三天的日期的数字之和是39.培训时间是连续的三天,你知道这几天分别是当月的哪几号吗?若培训时间是连续三周的周六,那这几天又分是当月的哪几号?

C组:

1、小明和小红做游戏,小明拿出一张日历:“我用笔圈出了2×2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗

元一次方程教案 篇6

数学思考:

1、学习分析问题找到相等关系并通过列方程解决问题的方法;

2、通过学习移项解一元一次方程,体会到式子变形的转化作用。

解决问题:体会解方程中的化归思想,会移项、合并解ax+b=cx+d型的方程,进一步认识如何用方程解决实际问题。

情感态度:通过学习“合并”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发数学学习的热情。

教学重点:

1、找相等关系列一元一次方程;

2、用移项、合并等解一元一次方程。

教学难点:找相等关系列方程,正确地移项解一元一次方程。

教学过程:

[活动1]展示问题、创设情境

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

(学生自主分析后,教师提问:)

1、本题怎样设未知数?

2、这批书的总数有几种表示法?它们之间有什么关系?

3、本题哪个相等关系可 )

解:设有x名学生,则可列方程得:

3x+20=4x—25

[活动2]学习“移项”解方程

提问:如何解方程3x+20=4x—25呢?

(学生分组讨论:①解方程的。目标是什么?②利用什么知识可以实现这种转化?)

引导学生分析方程的变化:

3x+20=4x—25

3x—4x=—25—20

观察:上面方程的变形有些什么变化?

归纳:像这样把等式一边的某项变号后移到另一边叫做移项。

[活动3]总结

解这个方程的具体过程:

3x+20=4x—25

《一元一次方程》的优秀教案 篇7

教学目标

知识与能力:

1、通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步、

2、在根据问题寻找相等关系、根据相等关系列出方程的过程中,培养获取信息、分析问题、处理问题的能力、

3、在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想、

教学目标

过程与方法:

1、能结合实际问题情境发现并提出数学问题、

2、通过学习进一步体会方程是刻画现实世界的有效数学模型,增强从实际问题出发建立数学模型的能力、

情感态度与价值观目标:

1、勤于思考,乐于探究,敢于发表自己的观点;

2、以积极的态度与同伴合作,从解决实际问题中体验数学价值、

教学重难点

重点

会用一元一次方程解决实际问题、

难点

将实际问题转化为数学问题,通过列方程解决问题、

元一次方程教案 篇8

教学目标:

1、理解什么是一元一次方程。

2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

3、进一步体会找等量关系,会用方程表示简单实际问题。

4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。

教学重点:

一元一次方程及方程的解。

教学难点:

寻找问题中的相等关系,列方程。

学习过程:

回顾旧知:方程的概念是什么?

问题1:鸡兔同笼

“今有雉兔同笼,上有四十九头,下有一百足,问雉兔各几何?”(分别用算术方法和方程方法解决)

问题2:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的速度是70km/h,卡车的速度是60km/h,客车比卡车早1小时到达B地,A、B两地间的路程是多少?(客车与卡车之间的时间关系解题)

1、用等号“=”来表示相等关系的式子,叫等式。

2、像这样含有未知数的等式叫做方程

判断:下列各式是不是方程:

(1)-2+5=3 ;

(2)3x-1=0;

(3)y=3;

(4)x+y>2;

(5)2x-5y+1=0;

(6)xy-1=0;

(7)2m-n;

探究新知;

例1根据下列问题,设未知数并列出方程

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

解:

(1)设正方形的边长为x cm,然后发现相等关系:

4×边长=周长

可以利用这个相等关系,得到方程:4x=24

(2)设x个月后这台计算机的使用时间达到规定的检修时间2450小时,得到方程:1700+150x=2450

(3)设这个学校有x名学生,那么女生数就是,男生数是(1-)x,可列方程:-(1-)x=80观察上面三个方程有什么共同特点:

①只含有一个未知数;

②未知数的最高次数都是1。

只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。判断:下列各式是一元一次方程吗?

(1)2x+3y-1;

(2) x2+2x+1=0;

(3)x+2y=3;

(4)1-x=x+1;

(5)x2+3=4;

(6)x+y=5;

(7)1+7=15-8+1;

(8)2χ2-5χ+1=0做一做:

x=1000和x=2000中哪一个是方程()x=80的解?

方程的解:使方程左右两边相等的未知数的值。检验一个数值是不是方程的解的步骤:

1、将数值代入方程左边进行计算,

2、将数值代入方程右边进行计算,

3、比较左右两边的值,若左边=右边,则是方程的解,反之,则不是。

练一练:

请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?

(1)t=-2(2)t=2 (3)t=1

练习提高:

根据下列问题,设未知数,列出方程:

1、鸟巢里的环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?

2、甲种铅笔每支元,乙种铅笔每支元,用9元钱买了两种铅笔共20支,问各买了多少支?

3、一个梯形下底比上底多2cm,高是5cm,面积是40平方厘米,求上底。

小结:

1、方程的概念

2、一元一次方程的概念

3、方程的解的概念

元一次方程教案 篇9

教学目标:

1、能说出什么叫一元一次方程;

2、知道“元”和“次”的含义;

3、熟练掌握最简一元一次方程的解法及理论依据;

能力目标:

1、培养学生准确运算的能力;

2、培养学生观察、分析和概括的能力;

3、通过解方程的教学,了解化归的数学思想。

德育目标:

1、渗透由特殊到一般的辩证唯物主义思想;

2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;

3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

重点:

1、一元一次方程的概念;

2、最简方程的解法;

难点:正确地解最简方程。

教学方法:引导发现法

教学过程

一、旧知识的复习:

1、什么叫等式?等式具有哪些性质?

2、什么叫方程?方程的解?解方程?

二、新知识的教学:

(1)只含有一个未知数;

(2)未知数的次数都是一次。

想一想:

(1)�

2、检测:

3、课堂小结:

四、本节学习的主要内容

1、一元一次方程定义;

2、最简方程(其中是未知数);

3、解最简方程的主要思路和解题的关键步骤及依据。

五、课堂作业。

元一次方程教案 篇10

一、说教材

方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的`解法。并通过练习归纳掌握解方程的基本步骤和技能。

1、教学目标

(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程·

2、了解一元一次方程解法的一般步骤·

(2)、能力目标:经历"把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,

(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望

2、通过埃及古题的情境感受数学文明。

2、教学重点:通过"去分母"解一元一次方程

3、教学难点:探究通过"去分母"的方法解一元一次方程

二、说教法:

在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

我的教学设计的指导思想是:

1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。

2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。

三、说学法

教学活动流程图活动内容和目的

活动1列方程解决实际问题创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·

活动2解含有分母的一元一次方程以学生已有的关于等式性质的数学知识基础,探索利用“去分母"的方法解一元一次方程·

活动3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤·

活动4小结总结本节收获

元一次方程教案 篇11

教学目标:

1、能说出什么叫一元一次方程;

2、知道“元”和“次”的含义;

3、熟练掌握最简一元一次方程的解法及理论依据;

能力目标:

1、培养学生准确运算的能力;

2、培养学生观察、分析和概括的能力;

3、通过解方程的教学,了解化归的数学思想、

德育目标:

1、渗透由特殊到一般的辩证唯物主义思想;

2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;

3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

重点:

1、一元一次方程的概念;

2、最简方程的解法;

难点:正确地解最简方程。

教学方法:引导发现法

教学过程

一、旧知识的复习:

1、什么叫等式?等式具有哪些性质?

2、什么叫方程?方程的解?解方程?

二、新知识的教学:

观察下列方程:…

想一想:这些方程有什么共同特点?(学生思考后回答)

特点:

(1)只含有一个未知数;

(2)未知数的次数都是一次。

(板书课题,学生总结定义)

定义:只含有一个未知数并且未知数的次数都是一次的方程叫做一元一次方程。

强调:“元”指什么?(未知数的个数)

“次”指什么?(方程中含有未知数项的最高次数)

想一想:

(1)�

强调:为什么?

(2)怎样求最简方程(其中是未知数)的解?

三、解下列方程

① ②

③ ④

(学生探讨求解过程及理论依据后板书解题过程)

解:①根据等式的基本性质2,在方程两边同除以3,

未知数系数化为1,得

②③④解法略

强调:检验解的`方法。

想一想:

解最简方程(其中是未知数)时的主要思路是什么?解题的关键步骤是什么?

(引导学生思考后回答)

主要思路:把最简方程的未知数的系数化为1,变形为的形式;

解题的关键步骤:根据等式的基本性质2,在方程两边都除以未知数的系数(或两边都乘以未知数的系数的倒数),使未知数的系数化为1,得到最简方程的解。

强调:①方程两边都除以未知数的系数的步骤可以进行的条件是什么?()

②最简方程一定有唯一的一个解。

四、巩固练习

1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:

3、课堂小结:

五、本节学习的主要内容

1、一元一次方程定义;

2、最简方程(其中是未知数);

3、解最简方程的主要思路和解题的关键步骤及依据。

六、课堂作业

A、解下列方程:

B、如果关于的方程是一元一次方程,求的值;

C、解关于的方程:

元一次方程教案 篇12

1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

2、会用等式性质解形如x+5=12的简单方程。

3、培养观察、分析概括的能力。

1课时

能用等式的性质解简单的方程。

了解等式的性质。

(一)导入新课

故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?

(板书:大象的体重=石头的重量)

师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

检查预习。

(二)讲授新课

探究一:学习等式性质

1、师操作:在天平两侧各放一个5克砝码。

提问:你能用一个等式表示天两边关系吗?

提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都加上同一个数,等式仍然成立。

师操作在刚才的基础上一个一个减砝码。

提问:你能用等式来表示吗?

提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都减去同一个数,等式仍然成立。

3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

(三)重点精讲。

探究二:学习解方程

师板书x+2=10问:用天平如何表示?

问:如何用刚才的知识解方程?(两边都减去2)

1、师根据学生回答板书并画出天平图。

2、师在解题示范时要注重“解”和“等于号”的书写要求。

3、交代检验方法。

4、学生试着解方程。

y-7=12 23+x=45

组内交流收获和疑惑。

小组汇报。

教师总结板书:根据等式的性质解方程。

(五)随堂检测

1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

2、看图列方程,并解方程。

3、解方程。

(1)x – 19 = 2

(2)x - =

4、看图列方程,并解方程。

5、看图列方程,并解方程。

6、看图列方程,并解方程。

板书设计

x+5=7 x-5= 7

解:x+5-5=7-5解:x-5+5=7+5

x=2 x=12

等式的两边同时加上或者减去同一个数,等式仍然成立。

《一元一次方程》教学设计 篇13

第一节:从问题到方程

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0.

第二节:解一元一次方程

一元一次方程解法的一般步骤:

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a≠0)的形式;

第三节:用一元一次方程解决问题

(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系。

(2)找出等量关系:找出能够表示本题含义的相等关系。

(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。

(4)解方程:解所列的方程,求出未知数的值。

(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。

元一次方程教案 篇14

教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

(设第一小组共摘了x个苹果,则依题意,得)

三、课堂练习

1.买4本练习本与3支铅笔一共用了元,已知铅笔每支元,问练习本每本多少元?

2.我国城乡居民1988年末的`储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

四、师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数

阿拉题库 · 学习办公更轻松!

22 3893119