首页 > 学习资料 > 教案大全 >

高一数学教案优秀4篇

网友发表时间 72616

发表时间

【导言】此例“高一数学教案优秀4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高一数学教案【第一篇】

本文题目:高一数学教案:对数函数及其性质

对数函数及其性质(二)

内容与解析

(一) 内容:对数函数及其性质(二)。

(二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查。题型主要是选择题和填空题,命题灵活。学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用。

一、 目标及其解析:

(一) 教学目标

(1) 了解对数函数在生产实际中的简单应用。进一步理解对数函数的图象和性质;

(2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质。

(二) 解析

(1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确。

(2)反函数求法:①确定原函数的值域即新函数的定义域。②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域。

二、 问题诊断分析

在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。

三、 教学支持条件分析

在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。

四、 教学过程

问题一。 对数函数模型思想及应用:

① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升。

(Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系?

(Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度。

②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想

问题二。反函数:

① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量。 我们称这两个函数为反函数(inverse function)

② 探究:如何由 求出x?

③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的。 习惯上我们通常用x表示自变量,y表示函数,即写为 .

那么我们就说指数函数 与对数函数 互为反函数

④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么?

⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么?

由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称)

⑦练习:求下列函数的反函数: ;

(师生共练 小结步骤:解x ;习惯表示;定义域)

(二)小结:函数模型应用思想;反函数概念;阅读P84材料

五、 目标检测

1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是

A. (x 0) B. (x 0) C. (x 0) D. (x 0)

解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B.

2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( )

A. B. C. D.

2. B 解析: ,代入 ,解得 ,所以 ,选B.

3. 求函数 的反函数

3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 .

总结20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助!

高一数学教案【第二篇】

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法。

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。

(2)能从数和形两个角度认识单调性和奇偶性。

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想。

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识。教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来。

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

最新高一数学教学教案【第三篇】

一、指导思想

根据学校的教学工作计划要求,深刻钻研新课标,准确把握课程知识体系,认真探索新课标的教学模式和教学方法,从根本上转变教学观念,突出“学会做人、学会做事、学会合作、学会学习”的育人要求,引导学生确立“尊重、关爱、责任”的最基本的价值观,全面完成教育教学任务。

二、教学目标要求

1、引导学生确立“尊重、关爱、责任”的基本的价值观目标,用学生乐于接受的形式,教育他们要正确认识自我,学会与人交往,追求高雅情趣、品味美好人生,对自己的行为负责,能明辨是非,知法、守法、撑起法律的保护伞。

2、教学生掌握“自主学习,合作学习,探究学习”的`学习方法。使全体学生树立起明确的学习目标,养成良好的学习习惯,调动起学生学习思想品德课的积极性。

三、学情分析

本学期因工作需要,我改代思想品德课,自己对新教材不熟悉,对学生也不了解,加之本届学生的素质差,师生互不了解,要想实现本学期的教学目标,不是件容易的事。因此,本学期工作的首要任务,是尽快在短时间内,摸清学生的底子,然后有的放矢地进行教学。

四、教学措施

1、加强学习,提高认识,转变观念,彻底改革课堂教学方法,课堂教学要坚持让“人人参与,个个展示、体验成功、享受快乐”的原则,教给学生学习方法,提高学生的学习能力。

2、积极参加教研活动,虚心向教学有方,教学成绩突出的教师学习,本学期坚持听课不少于36节。

3、积极参加,教师培训活动,认真学习并掌握信息技术,充分利用信息技术,信息资源为教学服务,力争做到用电脑备课,进多媒体教室上课。

4、根据学校的要求,认真备课,做到备知识、备方法、备情感。上课,要认真落实“人人参与、个个展示、体验成功、享受快乐”的课堂主题。课后,要及时写好教学反思;课后作业,要分层布置。自习辅导要做到“抓两头、促中间”,不搞一刀切。

5、要积极撰写教学案例、教学设计、教学论文等,及时总结得失,提高自己的业务水平。

高一数学教案【第四篇】

教学目标

1.理解分数指数幂的含义,了解实数指数幂的意义。

2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

教学重点

1.分数指数幂含义的理解。

2.有理数指数幂的运算性质的理解。

3.有理数指数幂的运算和化简。

教学难点

1.分数指数幂含义的理解。

2.有理数指数幂的运算和化简。

教学过程

一.问题情景

上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

二.学生活动

1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系

(1)=(2)=

2.从上述问题中,你能得到的结论为

3.(a0)及(a0)能否化成指数幂的形式?

三.数学理论

正分数指数幂的意义:=(a0,m,n均为正整数)

负分数指数幂的意义:=(a0,m,n均为正整数)

1.规定:0的正分数指数幂仍是0,即=0

0的负分数指数幂无意义。

3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

即=(1)

=(2)其中s,tQ,a0,b0

=(3)

四.数学运用

例1求值:

(1)(2)(3)(4)

例2用分数指数幂的形式表示下列各式(a0)

(1)(2)

例3化简

(1)

(2)(3)

例4化简

例5已知求(1)(2)

五.回顾小结

1.分数指数幂的意义。=(0,m,n)

无意义

2.有理数指数幂的运算性质

3.整式运算律及乘法公式在分数指数幂运算中仍适用

4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

练习P47-48练习1,2,3,4

六.课外作业

P48习题(1)2,4

相关推荐

热门文档